编号 zgly0001640113
文献类型 期刊论文
文献题名 东北黑土区侵蚀沟遥感影像特征提取与识别
作者单位 北京师范大学地理学院 北京师范大学地理科学学部
母体文献 遥感学报
年卷期 2018年04期
年份 2018
分类号 TP751
关键词 侵蚀沟 训练样本 浅层特征 中层特征 深层特征 卷积神经网络
文摘内容 东北黑土区是中国重要的粮食生产区,而长期的开垦造成了严重的水土流失现象,坡耕地表面出现大量的侵蚀沟。侵蚀沟的识别是土壤侵蚀监测的重要手段之一,目前遥感技术在侵蚀沟的识别中应用广泛,但自动化程度不高。针对特定地物影像的识别,如何选取最能够有效描述该地物的特征是解决问题的关键。本文构建了耕地和侵蚀沟遥感影像的训练样本集,基于样本集分别提取了由光谱特征和纹理特征组成的浅层特征、SIFT特征经编码后得到的中层特征,以及利用卷积神经网络提取的深层特征;再基于不同层次的特征选用合适的分类器对遥感影像进行分类,识别出含有侵蚀沟的遥感影像,形成了一套针对侵蚀沟的特征提取与识别方法,为东北黑土区的耕地保护提供有力支持。测试结果表明:基于中层特征的识别精度最高,为98.5%,但该特征需要人工设计,自动化程度有限;而利用卷积神经网络可自动提取深层特征,其识别精度达到了95.5%,同时大大提高了自动化程度,满足侵蚀沟影像的识别的需求。