数据资源: 中文期刊论文

内蒙古西部阿拉善沙漠地区末次冰盛期和全新世中期的水汽来源——依据现代气象过程、古气候模拟和地质记录的综合解译(英文)



编号 zgly0001691440

文献类型 期刊论文

文献题名 内蒙古西部阿拉善沙漠地区末次冰盛期和全新世中期的水汽来源——依据现代气象过程、古气候模拟和地质记录的综合解译(英文)

作者 冯滢瑛  杨小平 

作者单位 KeyLaboratoryofCenozoicGeologyandEnvironment  InstituteofGeologyandGeophysics  CAS  DepartmentofGeography  SchoolofEarthSciences  ZhejiangUniversity 

母体文献 Journal of Geographical Sciences 

年卷期 2019年12期

年份 2019 

分类号 P532 

关键词 BadainJaranDesert  TenggerDesert  UlanBuhDesert  Asiansummermonsoon  westerlies  paleoclimate 

文摘内容 Knowledge of moisture sources is of great significance for understanding climatic change and landscape evolution in desert environments. In this paper, we aim to clarify moisture origins for the Alashan(Alxa) Sand Seas(ALSS) in western Inner Mongolia and their transport pathways during the Last Glacial Maximum(LGM) and the mid-Holocene using modern analogues and paleoclimatic simulations. Precipitation data for the period 1959–2015 from meteorological stations in the study area and wind and specific humidity data from the European Center for Medium-Range Weather Forecasts(ECMWF) daily reanalysis were adopted to determine the moisture sources of summer precipitation in the ALSS. In addition paleoclimate simulations under PMIP3/CMIP5 protocols were used to detect the atmospheric circulation and precipitation at 21 ka BP and 6 ka BP over the ALSS. We also reviewed paleoclimate records from the ALSS to acquire a semi-quantitative reconstruction of the moisture history during the late Pleistocene and Holocene. Our results suggest that the summer monsoon transported water vapor from the Indian Ocean and the South China Sea to the ALSS during July and August, causing increased precipitation. The dominant moisture source was from the southwest monsoon, while the East Asian summer monsoon also partly contributed to precipitation in the ALSS. The increased humidity during the period 8.2–4.2 ka BP in the ALSS, as derived from both climate simulation outputs and sedimentary records, was caused by monsoons according to the outputs of simulations. At 21 ka BP, the moisture sources of the ALSS were greatly associated with the prevailing westerlies.

相关图谱

扫描二维码