数据资源: 中文期刊论文

关中地区小麦冠层光谱与氮素的定量关系



编号 zgly0001534762

文献类型 期刊论文

文献题名 关中地区小麦冠层光谱与氮素的定量关系

作者 尚艳  常庆瑞  刘秀英  王晓星  田明璐 

作者单位 西北农林科技大学资源环境学院  河南科技大学农学院 

母体文献 西北农林科技大学学报(自然科学版 

年卷期 2016年05期

年份 2016 

分类号 S512.1 

关键词 小麦  叶片氮含量  冠层高光谱反射率  比值植被指数  定量分析  监测模型 

文摘内容 【目的】分析不同生育期及整个生育期小麦叶片氮含量(LNC)与冠层光谱反射特征的关系,以实现对田间小麦活体氮素营养状况的监测,为小麦叶片氮素状况的精确诊断提供依据。【方法】以位于陕西关中地区杨凌揉谷镇、扶风马席村和巨良农场的3个小麦试验田为研究对象,测定不同长势及生育期小麦LNC及冠层光谱反射率,分析不同长势下小麦LNC和反射率的变化,并研究氮含量与冠层光谱反射率的相关性,以及小麦LNC与比值植被指数(RVI)、归一化植被指数(NDVI)的相关性,建立小麦LNC的敏感波段及光谱监测模型。【结果】在同一生育期,长势差的小麦叶片氮含量较低,长势较好的叶片氮含量高。与单波段相比,组合波段构成的植被指数RVI、NDVI与LNC的相关性明显提高,近红外波段(730~1 075nm)和红波段630,660,690nm组成组合波段的RVI、NDVI与LNC呈极显著正相关,其中LNC与RVI的相关性较高。利用独立的小麦田间试验数据,采用通用的均方根差(RMSE)、决定系数(R2)、准确度(斜率)3个指标对所建立的模型进行检验,最终选取RVI(970,690)为监测小麦LNC的最佳光谱参数,构建的最佳模型为LNC=0.176 3×RVI(970,690)0.775 6,R2为0.863,RMSE为0.137,准确度为0.979,接近于1。【结论】利用小麦冠层光谱反射率构建了预测小麦LNC的最佳模型,该模型具有较好的准确度和普适性,适用于整个生育期小麦叶片氮含量的监测。

相关图谱

扫描二维码