编号 030022304
推送时间 20200127
研究领域 森林经理
年份 2020
类型 期刊
语种 英语
标题 Optimal Input Features for Tree Species Classification in Central Europe Based on Multi-Temporal Sentinel-2 Data
来源期刊 REMOTE SENSING
期 第223期
发表时间 20191106
关键词 tree species classification; Sentinel-2; multi-temporal; Wienerwald biosphere reserve;
摘要 Detailed knowledge about tree species composition is of great importance for?forest?management. The two identical European Space Agency (ESA) Sentinel-2 (S2) satellites provide data with unprecedented spectral, spatial and temporal resolution. Here, we investigated the potential benefits of using high temporal resolution data for classification of five coniferous and seven broadleaved tree species in a diverse Central European?Forest. To run the classification, 18 cloud-free S2 acquisitions were analyzed in a two-step approach. The available scenes were first used to stratify the study area into six broad land-cover classes. Subsequently, additional classification models were created separately for the coniferous and the broadleaved?forest?strata. To permit a deeper analytical insight in the benefits of multi-temporal datasets for species identification, classification models were developed taking into account all 262,143 possible permutations of the 18 S2 scenes. Each?model?was fine-tuned using a stepwise recursive feature reduction. The additional use of vegetation indices improved the?model?performances by around 5 percentage points. Individual mono-temporal tree species accuracies range from 48.1% (January 2017) to 78.6% (June 2017). Compared to the best mono-temporal results, the multi-temporal analysis approach improves the out-of-bag overall accuracy from 72.9% to 85.7% for the broadleaved and from 83.8% to 95.3% for the coniferous tree species, respectively. Remarkably, a combination of six-seven scenes achieves a?model?quality equally high as the?model?based on all data; images from April until August proved most important. The classes European Beech and European Larch attain the highest user's accuracies of 96.3% and 95.9%, respectively. The most important spectral variables to distinguish between tree species are located in the Red (coniferous) and short wave infrared (SWIR) bands (broadleaved), respectively. Overall, the study highlights the high potential of multi-temporal S2 data for species-level classifications in Central European forests.
服务人员 付贺龙
PDF文件 浏览全文