编号
lyqk004506
中文标题
木塑复合材料微观结构主要表征技术
作者单位
国际竹藤中心生物质材料研究中心,国家林业局/北京市共建竹藤科学与技术重点实验室,北京 100102;国际竹藤中心生物质材料研究中心,国家林业局/北京市共建竹藤科学与技术重点实验室,北京 100102;国际竹藤中心生物质材料研究中心,国家林业局/北京市共建竹藤科学与技术重点实验室,北京 100102
期刊名称
世界林业研究
年份
2014
卷号
27
期号
3
栏目编号
1
栏目名称
专题论述
中文摘要
木塑复合材料(WPC)因其具有良好的耐候性、疏水性及低成本等优异性能已得到广泛应用。WPC的性能决定其应用领域,而性能在很大程度上由其结构决定。因此,研究WPC结构与性能间关系具有重要的科学意义和指导作用。文中概述了国内外有关WPC微观结构表征的主要技术,总结了目前存在的主要问题,并提出未来的研究方向。
基金项目
十二五国家科技支撑项目课题(2012BAD54G01)
英文标题
Major Characterization Techniques of Micro-Structure of Wood-plastic Composites
作者英文名
Ren Dan,Wang Hao and Yu Yan
单位英文名
International Center for Bamboo and Rattan,State Forestry Administration/Beijing Key Lab of Bamboo and Rattan Science and Technology,Beijing 100102,China;International Center for Bamboo and Rattan,State Forestry Administration/Beijing Key Lab of Bamboo and Rattan Science and Technology,Beijing 100102,China;International Center for Bamboo and Rattan,State Forestry Administration/Beijing Key Lab of Bamboo and Rattan Science and Technology,Beijing 100102,China
英文摘要
Wood-plastic composites (WPC) have been put into wide application for their good performance in weathering resistance and hydrophobicity and low costs as well. However, the applications of WPC have a high dependence on their performance, while their performance was significantly determined by their structure. Thus, it is of important guiding significance to study the relation between WPC structure and their performances. In this paper, the major characterization techniques of micro-structure of WPC were summarized and then main problems were concluded and the future research orientation was also prospected.
英文关键词
wood-plastic composite;characterization technique;property;structure
起始页码
41
截止页码
45
投稿时间
2013/10/14
分类号
S781.1;TS653
DOI
10.13348/j.cnki.sjlyyj.2014.03.007
参考文献
[1] Ismail M R, Yassen A A M, Afify M S. Mechanical properties of rice straw fiber-reinforced polymer composites[J]. Fibers and Polymers, 2011, 12(5): 648-656.
[2] Devi R R, Maji T K, Gogoi K, et al. Synergistic effect of nanoTiO2 and nanoclay on mechanical,flame retardancy,UV stability,and antibacterial properties of wood polymer composites[J]. Polymer Bulletin, 2013, 70(4): 1397-1413.
[3] Adhikary K B, Pang S, Staiger M P. Dimensional stability and mechanical behaviour of wood-plastic composites based on recycled and virgin high-density polyethylene (HDPE)[J]. Composites Part B: Engineering, 2008, 39(5): 807-815.
[4] Lee C H, Wu T L, Chen Y L, et al. Characteristics and discrimination of five types of wood-plastic composites by FTIR spectroscopy combined with principal component analysis[J]. Holzforschung, 2010, 64(6): 699-704.
[5] Sandt C, Sockalingum G D, Aubert D, et al. Use of Fourier-transform infrared spectroscopy for typing of Candida albicans strains isolated in intensive care units[J]. Journal of Clinical Microbiology, 2003, 41(3): 954-959.
[6] Jian L, Zhou C, Gang W, et al. Preparation and linear rheological behavior of polypropylene/MMT nanocomposites[J]. Polymer Composites, 2003, 24(3): 323-331.
[7] Kord B, Hemmasi A H, Ghasemi I. Properties of PP/wood flour/organomodified montmorillonite nanocomposites[J]. Wood Science and Technology, 2011, 45(1): 111-119.
[8] Han G, Lei Y, Wu Q, et al. Bamboo-fiber filled high density polyethylene composites: effect of coupling treatment and nanoclay[J]. Journal of Polymers and the Environment, 2008, 16(2): 123-130.
[9] Lee C H, Hung K C, Chen Y L, et al. Effects of polymeric matrix on accelerated UV weathering properties of wood-plastic composites[J]. Holzforschung, 2012, 66(8): 981-987.
[10] Li L, Wang Q, Guo C. The influence of wood flour and compatibilizer (m-TMI-g-PP) on crystallization and melting behavior of polypropylene[J]. Journal of Thermal Analysis and Calorimetry, 2012, 107(2): 717-723.
[11] Arbelaiz A, Fernandez B, Ramos J A, et al. Thermal and crystallization studies of short flax fibre reinforced polypropylene matrix composites: effect of treatments[J]. Thermochimica Acta, 2006, 440(2): 111-121.
[12] Dorris G M, Gray D G. The surface analysis of paper and wood fibers by ESCA(electron spectroscopy for chemical analysis):I. applications to cellulose and lignin[J]. Cellulose Chemistry and Technology, 1978, 12(1): 9-23.
[13] Fabiyi J S, McDonald A G, McIlroy D. Wood modification effects on weathering of HDPE-based wood plastic composites[J]. Journal of Polymers and the Environment, 2009, 17(1): 34-38.
[14] Matuana L M, Kamdem D P. Accelerated ultraviolet weathering of PVC/wood-flour composites[J]. Polymer Engineering and Science, 2002, 42(8): 1657-1666.
[15] Liu R, Luo S, Cao J, et al. Characterization of organo-montmorillonite (OMMT) modified wood flour and properties of its composites with poly(lactic acid)[J]. Composite Part A: Applied Science and Manufacturing, 2013, 51: 33-42.
[16] 王清文, 王伟宏. 木塑复合材料与制品[M]. 北京: 化学工业出版社, 2006: 53-58.
[17] Altun Y, Dogǎn M, Bayramli E. Effect of alkaline treatment and pre-impregnation on mechanical and water absorbtion properties of pine wood flour containing poly (lactic acid) based green-composites[J]. Journal of Polymers and the Environment, 2013, 21(3): 850-856.
[18] Schirp A, Stender J. Properties of extruded wood-plastic composites based on refiner wood fibers and hemp fibers[J]. European Journal of Wood and Wood Products, 2010, 68(2): 219-231.
[19] Son J, Gardner D J, O'Neill S, et al. Understanding the viscoelastic properties of extrude polypropylene wood plastic composites[J]. Journal of Applied Polymeric Science, 2003, 89(6): 1638-1644.
[20] Deka B K, Maji T K, Mandal M. Study on properties of nanocomposites based on HDPE, LDPE, PP, PVC, wood and clay[J]. Polymer Bulletin, 2011, 67(9): 1875-1892.
[21] Faruk O, Matuana L M. Nanoclay reinforced HDPE as a matrix for wood-plastic composites[J]. Composites Science and Technology, 2008, 68(9): 2073-2077.
[22] 程献宝, 王小青, 余雁, 等. 纳米压痕技术在木质材料细胞壁力学研究中的应用[J]. 世界林业研究, 2011, 24(5): 40-46.
[23] 江泽慧, 余雁, 费本华, 等. 纳米压痕技术测量管胞次生壁S2层的纵向弹性模量和硬度[J]. 林业科学, 2004, 40(2): 113-118.
[24] 王传贵, 江泽慧, 费本华, 等. 化学成分对木材细胞壁纵向弹性模量和硬度的影响[J]. 北京林业大学学报, 2012, 34(3): 107-109.
[25] Lee S H, Wang S, Pharr G M, et al. Evaluation of interphase in a cellulose fiber-reinforced polypropylene composite by nanoindentation and finite element analysis[J]. Compos Part A: Applied Science and Manufacturing, 2007, 38(6): 1517-1524.
[26] Jakes J E, Hermanson J C, Stone D S. Nanoindentation of the interphase region of a wood-reinforced polypropylene composite[C]//Proceedings of 9th International Conference on Wood & Biofiber Plastic Composites, 2007: 197-203.
[27] Gu Y, Li M, Wang J, et al. Characterization of the interphase in carbon fiber/polymer composites using a nanoscale dynamic mechanical imaging technique[J]. Carbon, 2010, 48(11): 3229-3235.
[28] Lee S H, Wang S, Takashi E, et al. Visualization of interfacial zones in lyocell fiber reinforced polypropylene composite by AFM contrast imaging based on phase and thermal conductivity measurements[J]. Holzforschung,2009, 63(2): 240-247.
[29] Downing T D, Kumar R, Cross W M, et al. Determining the interphase thickness and properties in polymer matrix composites using phase imaging atomic force microscopy and nanoindentation[J]. Journal of Adhesion Science and Technology, 2000, 14(14): 1801-1812.
[30] Nair S S, Wang S, Hurley D C. Nanoscale characterization of natural fibers and their composites using contact-resonance force microscopy[J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(5): 624-631.
[31] Pakzad A, Simonsen J, Yassar R S. Gradient of nanomechanical properties in the interphase of cellulose nanocrystal composites[J]. Composites Science and Technology, 2012, 72(2): 314-319.
[32] Wang H, Tian G, Wang H, et al. Pull-out method for direct measuring the interfacial shear strength between short plant fibers and thermoplastic polymer composites (TPC)[J/OL]. (2013-06-05).[2013-09-10]. Holzforschung. DOI:10.1515/hf-2013-0052.
PDF全文
浏览全文