数据资源: 科信所期刊全文

菌根对林木生理代谢影响研究进展



编号 lyqk006486

中文标题 菌根对林木生理代谢影响研究进展

作者 邹慧  曾杰 

作者单位 中国林业科学研究院热带林业研究所,广州 510520

期刊名称 世界林业研究 

年份 2018 

卷号 31

期号 2

栏目编号 1

栏目名称 专题论述 

中文摘要 菌根作为自然界中最为普遍的一种植物-微生物共生体存在于绝大多数树种的根系中,具有较强的生态适应性和可塑性。在林木菌根形成过程中,菌根真菌参与根系乃至整个林木的生理代谢活动,从而促进林木生长,增强其抗逆性。因此,探究菌根对林木生理代谢的影响及作用机理是林木菌根应用的基础,具有重要的现实意义和科学价值。文中综述了近10余年来国内外有关外生菌根和丛枝菌根对于改善林木碳素营养,促进林木对氮、磷等矿质元素吸收、转运的途径与机制,以及在抗旱性、抗病性、抗重金属等生理代谢方面的研究进展,分析了当前我国林木菌根研究中存在的问题,并对未来研究进行展望,以期为我国林木菌根研究与应用提供参考。

关键词 丛枝菌根  外生菌根  林木生理代谢  营养代谢  抗逆性 

基金项目 “十三五”国家重点研发计划课题“西南桦高效培育技术研究”(2016YFD0600604)。

英文标题 Research Advances in Mycorrhizal's Effects on Physiological Metabolism of Trees

作者英文名 Zou Hui, Zeng Jie

单位英文名 Research Institute of Tropical Forestry,Chinese Academy of Forestry,Guangzhou 510520,China

英文摘要 As one of the most common symbionts of plant and micro-organism in natural ecosystems,mycorrhizae occur in roots of the majority of tree species with strong ecological fitness and plasticity. In mycorrhizae formation of trees,mycorrhizal fungi are involved in physiological metabolism activities of roots and even the whole tree,thus enhancing tree growth and increasing its resistance to stress. Investigating the effects and functioning mechanism of mycorrhizae on tree physiological metabolism is therefore the foundation of mycorrhizal application,which is of high practical importance and scientific value. The paper reviewed the pathway and mechanisms of ectomycorrhizae and arbuscular mycorrhizae to improve carbon nutrition and promote the absorption and transportation of mineral nutrients such as nitrogen,phosphorus,etc.,as well as the research on physiological metabolism of tolerance or resistance to drought,disease and heavy metal,etc. in the recent decade. It also analyzed the current problems in the study of tree mycorrhizal in China,and prospected the future research. The objective is to provide references for tree mycorrhizal study and application in China.

英文关键词 arbuscular mycorrhizae;ectomycorrhizae;tree physiological metabolism;nutrition metabolism;stress resistance

起始页码 19

截止页码 24

投稿时间 2017/10/27

最后修改时间 2018/1/22

作者简介 邹慧(1990-),江苏常州人,博士研究生,主要从事微生物与植物营养研究,E-mail:iuhuoz@163.com。

通讯作者介绍 曾杰,研究员,主要从事森林培育与经营研究,E-mail:zengj69@caf.ac.cn。

E-mail 曾杰,研究员,主要从事森林培育与经营研究,E-mail:zengj69@caf.ac.cn。

分类号 S718.8

DOI 10.13348/j.cnki.sjlyyj.2018.0004.y

参考文献 [1] VAN DER HEIJDEN M G A, HORTON T R. Socialism in soil:the importance of mycorrhizal fungal networks for facilitation in natural ecosystems[J]. Journal of Ecology, 2009, 97(6):1139-1150.
[2] HODGE A, FITTER A H. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(31):13754-13759.
[3] KOHLER J, HERNANDEZ J A, CARAVAC F, et al. Plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water-stressed plants[J]. Functional Plant Biology, 2008, 35(2):141-151.
[4] HE X H, DUAN Y H, CHEN Y L, et al. A 60-year journey of mycorrhizal research in China:past, present and future directions[J]. Science China:Life Sciences, 2010, 53(12):1374-1398.
[5] MIKKELSEN B L, ROSENDAHL S, JAKOBSEN I. Underground resource allocation between individual networks of mycorrhizal fungi[J]. New Phytologist, 2008, 180(4):890-898.
[6] SIMARD S W, BEILER K J, BINMHAM M A, et al. Mycorrhizal networks:mechanisms, ecology and modeling[J]. Fungal Biology Reviews, 2012, 26(1):39-60.
[7] WU Q S, ZOU Y N, HUANG Y M, et al. Arbuscular mycorrhizal fungi induce sucrose cleavage for carbon supply of arbuscular mycorrhizas in citrus genotypes[J]. Scientia Horticulturae, 2013, 160:320-325.
[8] LEI C, FITZGERALD L B, CONG T, et al. Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2[J]. Science, 2012, 337:1084-1087.
[9] ZAI X M, ZHU S N, QIN P,et al. Effect of Glomus mosseae on chlorophyll content, chlorophyll fluorescence parameters, and chloroplast ultrastructure of beach plum (Prunus maritima) under NaCl stress[J]. Photosynthetica, 2012, 50:323-328.
[10] 范继红, 杨国亭, 李桂伶. 接种VA菌根对黄檗幼苗生长的影响[J]. 东北林业大学学报, 2006, 34(2):18-19.
[11] JIN H, PFEFFER P E, DOUDS D D, et al. The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis[J]. New Phytologist, 2005, 168:687-696.
[12] MANJULA G, PHILIP E P, HAIM J, et al. Nitrogen transfer in the arbuscular mycorrhizal symbiosis[J]. Nature, 2005, 435:819-823.
[13] JARGEAT P, REKANGALT D, VERNER M C, et al. Characterisation and expression analysis of a nitrate transporter and nitrite reductase genes, two members of a gene cluster for nitrate assimilation from the symbiotic basidiomycete Hebeloma cylindrosporum[J]. Current Genetics, 2003, 43:199-205.
[14] HODGE A, STORER K. Arbuscular mycorrhiza and nitrogen:implications for individual plants through to ecosystems[J]. Plant and Soil, 2015, 386(1/2):1-19.
[15] CRISTINA C, HELGE E, CARMEN T, et al. Enzymatic evidence for the key role of arginine in nitrogen translocation by arbuscular mycorrhizal fungi[J]. Plant Physiology, 2007, 144:782-792.
[16] WHITESIDE M D, DIGMAN M A, GRATTON E, et al. Organic nitrogen uptake by arbuscular mycorrhizal fungi in a boreal forest[J]. Soil Biology and Biochemistry, 2012, 55:7-13.
[17] ATUL-NAYYAR A, HAMEL C, HANSON K, et al. The arbuscular mycorrhizal symbiosis links N mineralization to plant demand[J]. Myrorrhiza, 2009, 19(4):239-246.
[18] REYNOLDS H L, HARTIEY A E, VOGELSANG K M, et al. Arbuscular mycorrhizal fungi do not enhance nitrogen acquisition and growth of old-field perennials under low nitrogen supply in glasshouse culture[J]. New Phytologist, 2005, 167(3):869-880.
[19] VERESOGLOU S D, SEN R, MAMOLOS A P, et al. Plant species identity and arbuscular mycorrhizal status modulate potential nitrification rates in nitrogen-limited grassland soils[J]. Journal of Ecology, 2011, 99(6):1339-1349.
[20] 田蜜, 陈应龙, 李敏, 等. 丛枝菌根结构与功能研究进展[J]. 应用生态学报, 2013, 24(8):2369-2376.
[21] 于浩, 陈展, 尚鹤, 等. 野外模拟酸雨胁迫下接种外生菌根真菌对马尾松幼苗的缓解作用[J]. 生态学报, 2017, 37(16):5418-5427.
[22] 刘振坤, 田帅, 唐明. 不同树龄刺槐林丛枝菌根真菌的空间分布及与根际土壤因子的关系[J]. 林业科学, 2013, 49(8):89-95.
[23] ZHENG C Y, CHAI M M, JIANG S S, et al. Foraging capability of extraradical mycelium of arbuscular mycorrhizal fungi to soil phosphorus patches and evidence of carry-over effect on new host plant[J]. Plant Soil, 2015, 387:201-217.
[24] BENEDETTO A, MAGUMO F, BONFANTE P, et al. Expression profiles of a phosphate transporter gene (GmosPT) from the endomycorrhizal fungus Glomus mosseae[J]. Mycorrhiza, 2005, 15:620-627.
[25] NEUMANN E, SCHMID B, ROMHELD V, et al. Extraradical development and contribution to plant performance of an arbuscular mycorrhizal symbiosis exposed to complete or partial root zone drying[J]. Mycorrhiza, 2009, 20:13-23.
[26] 刘进法, 夏仁学, 王明元, 等. 接种丛枝菌根真菌对枳吸收利用磷酸铝的影响[J]. 应用生态学报, 2008, 19(10):2155-2160.
[27] 冀永生, 高辉, 顾泳洁, 等. 不同生境条件下苦槠丛枝菌根对根际土壤磷酸酶活性的影响[J]. 生态环境, 2008, 17(4):1586-1589.
[28] 杨红军, 李勇, 黄建国. 磷与信号抑制剂对外生菌根真菌分泌草酸的调控作用[J]. 微生物学报, 2015, 55(6):788-795.
[29] SOUSA N R, FRANCO A R, RAMOS M A, et al. Reforestation of burned stands:the effect of ectomycorrhizal fungi on Pinus pinaster establishment[J]. Soil Biology and Biochemistry, 2011, 43(10):2115-2120.
[30] GARCIA K, DELTEI A, CONEJERO G, et al. Potassium nutrition of ectomycorrhizal Pinus pinaster:overexpression of the Hebeloma cylindrosporum HcTrk1 transporter affects the translocation of both K+ and phosphorus in the host plant[J]. New Phytologist, 2014, 201(3):951-960.
[31] 陈双双, 王腾, 朱丽静, 等.菌根真菌处理下板栗对矿质元素的吸收和积累[J]. 北京农学院学报, 2015, 30(2):28-34.
[32] RUUHOLA T, LEHTO T.Do ectomycorrhizas affect boron uptake in Betula penduta?[J]. Canadian Journal of Forest Research, 2014, 44(9):1013-1019.
[33] 赵青华, 孙立涛, 王玉, 等. 丛枝菌根真菌和施氮量对茶树生长、矿质元素吸收与茶叶品质的影响[J]. 植物生理学报, 2014, 50(2):164-170.
[34] LILLESKOV E A, BRUNS T D, DAWSON T E, et al. Water sources and controls on water loss rates of epigeous ectomycorrhizal fungal sporocarps during summer drought[J]. New Phytologist, 2009, 182:483-494.
[35] BIRHANE E, STERCK F J, FETENE M, et al. Arbuscular mycorrhizal fungi enhance biomass, photosynthesis and water use efficiency of frankincense seedlings in a drought-pulse environment[J].Oecologia, 2012, 169(4):895-904.
[36] LI T, LIN G, ZHANG X, CHEN Y L, et al. Relative importance of an arbuscular mycorrhizal fungus (Rhizophagus intraradices) and root hairs in plant drought tolerance[J]. Mycorrhiza, 2014, 24(8):595-602.
[37] SMITH S E, FACELLI E, POPE S, et al. Plant performance in stressful environments:interpreting new and established knowledge of the roles of arbuscular mycorrhizas[J]. Plant and Soil, 2010, 326(1/2):3-20.
[38] YANG G W, LIU N, LU W J, et al. The interaction between arbuscular mycorrhizal fungi and soil phosphorus availability influences plant community productivity and ecosystem stability[J]. Journal of Ecology, 2014, 102(4):1072-1082.
[39] GARCIA I V, MENDOZA R E. Arbuscular mycorrhizal fungi and plant symbiosis in a saline-sodic soil[J]. Myrorrhiza, 2007, 17(3):167-174.
[40] 吴小芹, 高悦. 几种外生菌根菌对松苗抗非根部病害的影响[J]. 林业科学, 2007, 43(6):88-93.
[41] 湛蔚, 刘洪光, 唐明. 菌根真菌提高杨树抗溃疡病生理生化机制的研究[J]. 西北植物学报, 2010, 30(12):2437-2443.
[42] YIN D, DENG X, CHET I, et al. Physiological responses of Pinus sylvestris var. mongolica seedlings to the interaction between Suillus luteus and Trichoderma virens[J]. Current Microbiology, 2014, 69(3):334-342.
[43] YIN D, DENG X, SONG R. Synergistic effects between Suilllus luteus and Trichoderma virens on growth of Korean spruce seedlings and drought resistance of Scotch pine seedlings[J]. Journal of Forestry Research, 2015, 26(8):1-9.
[44] 尹大川, 邓勋, Chet I, 等. 厚环乳牛肝菌(Suillus grevillei) N40与绿木霉(Trichoderma virens)T43复合接种下樟子松苗木的生理响应[J]. 生态学杂志, 2014, 33(8):2142-2147.
[45] BEDINI S, TURRINI A, RIGO C, et al. Molecular characterization and glomalin production of arbuscular mycorrhizal fungi colonizing a heavy metal polluted ash disposal island, downtown venice[J]. Soil Biology and Biochemistry, 2010, 42(5):758-765.
[46] 张英伟, 柴立伟, 王东伟, 等. Cu和Cd胁迫下接种外生菌根真菌对油松根际耐热蛋白固持重金属能力的影响[J]. 环境科学, 2014, 35(3):1169-1175.
[47] VAN HEES P A W, ROSLING A, ESSEN S, et al. Oxalate and ferricrocin exudation by the extramatrical mycelium of an ectomycorrhizal fungus in symbiosis with Pinus sylvestris[J]. New Phytologist, 2006, 169(2):367-378.
[48] Vodnik D,Grcman H,Macek I,et al.The contribution of glomalin-related soil protein to Pb and Zn sequestration in polluted soil[J]. Science of the Total Environment, 2008, 392(1):130-136.
[49] CORNEJO P,MEIER S,BORIE G,et al.Glomalin-related soil protein in a Mediterranean ecosystem affected by a copper smelter and its contribution to Cu and Zn sequestration[J]. Science of the Total Environment, 2008, 406(1/2):154-160.
[50] GONZALEZ-CHAVEZ M C, CARRILLO-GONZALEZ R, WRIGHT S F, et al. The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements[J]. Environmental Pollution, 2004, 130(3):317-323.
[51] RAMESH G, PODILA G K, GAY G, et al. Different patterns of regulation for the copper and cadmium metal lothioneins of the ectomycorrhizal fungus Hebeloma cylindrosporum[J]. Applied and Environmental Microbiology, 2009, 75(8):2266-2274.
[52] 李霞, 彭霞薇, 伍松林, 等. 丛枝菌根对翅荚木生长及吸收累积重金属的影响[J]. 环境科学, 2014, 35(8):3142-3148.
[53] EVELIN H, KAPOOR R, GIRI B. Arbuscular mycorrhizal fungi in alleviation of salt stress:a review[J]. Annals of Botany, 2009, 104:1263-1280.
[54] ZHU X Q, TANG M, ZHANG H Q. Arbuscular mycorrhizal fungi enhanced the growth, photosynthesis, and calorific value of black locust under salt stress[J]. Photosynthetica, 2017, 55(2):378-385.
[55] 武冲, 张勇, 马妮, 等. 接种菌根菌短枝木麻黄对低温胁迫的响应特征[J]. 西北植物学报, 2012, 32(10):2068-2074.

PDF全文 浏览全文

相关图谱

扫描二维码