编号
lyqk011316
中文标题
利用空间信息学应对“以竹代塑”资源供给挑战
作者单位
1. 国际竹藤中心 北京 100102;
2. 国家林业和草原局/北京竹藤科学与技术重点开放实验室 北京 100102;
3. 福建永安竹林生态系统国家定位观测研究站 福建永安 366000
期刊名称
世界竹藤通讯
年份
2024
卷号
22
期号
1
栏目名称
特别报道
中文摘要
塑料污染是当今世界最受关注的环境问题之一,严重影响人类健康与发展。以竹代塑是我国结合自身资源优势提出的抗击塑料污染的重要解决方案。然而,制约以竹代塑产业高质量发展的最大瓶颈是竹资源供给能力难以满足代塑产品消费市场日益增长的需求。竹资源供给面临着资源监测精度不高、质量不均、采收成本高等3大挑战,因此综合提升竹资源供给能力刻不容缓。竹子空间信息科学是融合遥感科学、地理信息科学、统计学和运筹学等多学科技术的交叉学科,在解决竹资源供给的3大挑战方面具有广阔的应用前景。文章针对当前竹资源供给存在的问题,阐述了竹子空间信息科学技术在精准监测竹资源数量、提升竹资源质量以及降低采伐运输成本等方面的创新应用,以充分发挥交叉学科在应对竹资源供给挑战中的科技创新与引领作用,更好地服务以竹代塑产业高质量发展。
基金项目
国家社会科学基金(22BTJ005);国家自然科学基金(32001252);国际竹藤中心基本科研业务费(1632020029,1632021024,1632022024)。
英文标题
Harnessing Spatial Informatics to Address the Challenges in Resource Supply of Bamboo as a Substitute for Plastic
作者英文名
Xu Qing, Jiang Zehui
单位英文名
1. International Center for Bamboo and Rattan, Beijing 100102, China;
2. Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing 100102, China;
3. Yong'an National Observation and Research Station for Bamboo Forest Ecosystem, Yong'an 366000, Fujian, China
英文摘要
Plastic pollution is one of the most concerned environmental issues in the world, seriously affecting human health and development. Bamboo as a substitute for plastic, as an important solution to plastic pollution, is proposed by China in view of its advantages in bamboo resources. However, the largest bottleneck restricting the high-quality development of bamboo industry is the insufficient bamboo resource supply to meet the growing market demand for bamboo products. Bamboo resource supply is challenged mainly by the low precision of bamboo resources monitoring, the uneven quality, and the high cost of harvesting. Therefore it is urgent to improve the capacity of bamboo resources supply in a comprehensive way. Bamboo spatial informatics, which integrates multiple disciplines including remote sensing science, geographical information science, statistics and operational research, has a great potential to be applied for addressing these challenges. In view of the problems existing in bamboo resource supply, this paper elaborates on the applications of bamboo informatics in precise bamboo resource monitoring, quality improvement and felling/transport cost reduction, in the hope to give play to the innovation and leading role of spatial informatics in addressing the challenges and better serve the high-quality development of bamboo as a substitute for plastic.
英文关键词
spatial informatics;resource monitoring;bamboo resource supply;bamboo as a substitute for plastic;bamboo industry
起始页码
1
截止页码
7
作者简介
徐晴,副研究员,硕士生导师,研究方向为森竹林资源遥感调查与监测。E-mail:qing.xu@icbr.ac.cn。
通讯作者介绍
江泽慧,教授,博士生导师,国际木材科学院院士,主要研究方向为森林利用学、木材科学与技术、生态学。E-mail:jiangzh@icbr.ac.cn。
E-mail
jiangzh@icbr.ac.cn
DOI
10.12168/sjzttx.2024.02.26.001
参考文献
[1] 冯鹏飞, 李玉敏. 2021年中国竹资源报告[J]. 世界竹藤通讯, 2023, 21(2):100-103.
[2] 李增元, 刘清旺, 庞勇. 激光雷达森林参数反演研究进展[J]. 遥感学报, 2016. 20(5):1138-1150.
[3] 黄华国. 林业定量遥感研究进展和展望[J]. 北京林业大学学报, 2019, 41(12):1-14.
[4] WANG C, LUO S Z, XI X H, et al. Influence of voxel size on forest canopy height estimates using full-waveform airborne LiDAR data[J]. Forest Ecosystems, 2020, 7:31. DOI:10.1186/s40663-020-00243-2.
[5] DU H, FAN W, ZHOU G, Et al. Retrieval of canopy closure and LAI of moso bamboo forest using spectral mixture analysis based on real scenario simulation[J]. IEEE Transactions on Geoscience and Remote Sensing. 2011, 49(11):4328-4340.
[6] LI X, DU H, MAO F, et al. Estimating bamboo forest aboveground biomass using EnKF-assimilated MODIS LAI spatiotemporal data and machine learning algorithms[J]. Agricultural and Forest Meteorology, 2018, 256-257:445-457.
[7] Cao L, Coops N C, Dun Y, et al. Estimating canopy structure and biomass in bamboo forests using airborne LiDAR data[J]. ISPRS Journal of Photogrammetry and Remote Sensing. 2019, 148:114-129.
[8] ZHANG M, GONG P, QI S, et al. Mapping bamboo with regional phenological characteristics derived from dense Landsat time series using Google Earth Engine[J]. International Journal of Remote Sensing, 2019, 40(24):9541-9555.
[9] QI S, SONG B, LIU C, et al. Bamboo forest mapping in china using the dense Landsat 8 image archive and Google Earth engine[J]. Remote Sensing, 2022, 14(3):762.
[10] RAO J N K, MOLINA I. Small area estimation[M]. John Wiley & Sons, 2015.
[11] KING G, ZENG L. Logistic regression in rare events data[J]. Political Analysis, 2001, 9(2):137-163.
[12] 朱耿平, 刘国卿, 卜文俊, 等. 生态位模型的基本原理及其在生物多样性保护中的应用[J]. 生物多样性, 2013, 21(1):90-98.
[13] 吴艳, 王洪峰, 穆立蔷. 物种分布模型的研究进展与展望[J]. 高师理科学刊, 2022, 42(5):66-70.
[14] 郭彦龙, 赵泽芳, 乔慧捷, 等. 物种分布模型面临的挑战与发展趋势[J]. 地球科学进展, 2020, 35(12):1292-1305.
[15] XU Q, LI B, MCROBERTS R E, et al. Harnessing data assimilation and spatial autocorrelation for forest inventory[J]. Remote Sensing of Environment, 2023, 288:113488. DOI:10.1016/j.rse.2023.113488.
[16] HOU Z Y, YUAN K, STÅHL G, et al. Conjugating remotely sensed data assimilation and model-assisted estimation for efficient multivariate forest inventory[J]. Remote Sensing of Environment, 2023, 299(Series D):113854. DOI:10.1016/j.rse.2023.113854.
[17] 高志民. 竹类植物遗传育种研究进展[J]. 世界竹藤通讯, 2023, 21(1):1-9.
[18] 周凯, 曹林. 遥感在森林精准培育中的应用现状与展望[J]. 遥感学报, 2021, 25(1):423-438.
[19] 朱嵊, 黄敏仁. 基因组选择在林木遗传育种研究中的进展与展望[J]. 林业科学, 2020, 56(11):176-186.
[20] 边黎明, 张慧春. 表型技术在林木育种和精确林业上的应用[J]. 林业科学, 2020, 56(6):113-126.
[21] GUO, D, HU R, SONG X, et al. Exploring photon-counting laser altimeter ICESat-2 in retrieving LAI and correcting clumping effect[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61:1-9.
[22] LIANG X L, KANKARE V, HYYPPÄ J, et al. Terrestrial laser scanning in forest inventories[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 115:63-77.
[23] XU Q, MAN A, FREDRICKSON M, et al. Quantification of uncertainty in aboveground biomass estimates derived from small-footprint airborne LiDAR[J]. Remote Sensing of Environment, 2018, 216:514-528.
[24] 刘清旺, 李世明, 李增元, 等. 无人机激光雷达与摄影测量林业应用研究进展[J]. 林业科学, 2017, 53(7):134-148.
[25] XU Q, HOU Z, MALTAMO M, et al. Calibration of area based diameter distribution with individual tree based diameter estimates using airborne laser scanning[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 93:65-75.
[26] 潘蔷, 刘丽敏, 吴桐. 遥感在气象监测中的应用[J]. 黑龙江气象, 2016, 33(3):31-33, 38.
[27] 徐立强. 卫星遥感技术在气象灾害调查中的应用实践[J]. 科技与创新, 2022(15):152-154.
[28] 金文德, 云露洋. 基于Landsat 8卫星遥感影像水体提取方法的分析[J]. 中国科技信息, 2023(21):116-119.
[29] 石川. 遥感测绘技术在监测土壤污染中的应用研究[J]. 中国新技术新产品, 2023(12):130-132.
[30] XU Y, ZHANG X, LI H, et al. Smart breeding driven by big data, artificial intelligence, and integrated genomic-enviromic prediction[J]. Molecular Plant, 2022, 15(11):1664-1695.
[31] FRAEFEL M, BONT L G, FISCHER C. Spatially explicit assessment of forest road suitability for timber extraction and hauling in Switzerland[J]. European Journal of Forest Research, 2021, 140:1195-1209.
[32] KRUMOV T. Determination of the optimal density of the forest road network[J]. Journal of Forest Science, 2019, 65:438-444.
[33] SENKO S, KARJALAINEN T. Prospects of forest road infrastructure development in northwest Russia with proven Nordic solutions[J]. Scandinavian Journal of Forest Research, 2013, 28(8):758-774.
[34] BELLAVENUTTE P, CHUNG W, DIAZ-BALTEIRO L. Partitioning and solving large-scale tactical harvest scheduling problems for industrial plantation forests[J]. Canadian Journal of Forest Research, 2020, 50(8):811-818.
[35] BORGES J G, MARQUES S, GARCIA-GONZALO J, et al. A multiple criteria approach for negotiating ecosystem services supply targets and forest owners' programs[J]. Forest Science, 2017, 63(1):49-61.
[36] MESQUITA M, MARQUES S, MARQUES M, et al. An optimization approach to design forest road networks and plan timber transportation[J]. Operational Research, 2022, 22(3):2973-3001.
[37] JANUSZ G, LUCZKOWSKI B. GIS maps and analysis in designing forest road system on mountainous areas[J]. Electronic Journal of Polish Agricultural Universities, 2017, 20(4):14. DOI:10.30825/5.ejpau.41.2017.20.4.
PDF全文
浏览全文