数据资源: 科信所期刊全文

细胞壁空隙对木材性能及加工利用的影响



编号 lyqk009461

中文标题 细胞壁空隙对木材性能及加工利用的影响

作者 刘文静  张玉君 

作者单位 内蒙古农业大学材料科学与艺术设计学院,呼和浩特 010018

期刊名称 世界林业研究 

年份 2021 

卷号 34

期号 2

栏目编号 1.0

栏目名称 专题论述 

中文摘要 细胞壁空隙是木材水分横向传输的重要通道,是影响木材干燥速率、木材改性效果的重要因素。针对细胞壁空隙的研究不仅是对木材本身构造和性能的进一步了解,更是对木材物理和化学加工基础的深入诠释。文中概述木材细胞壁空隙的组成、分类、具体尺寸等,归纳其对木材物理力学性能及加工利用的影响,总结目前木材细胞壁空隙构造研究尚存在的问题并提出建议,以为实际生产和科学研究提供参考。

关键词 细胞壁空隙  木材构造  木材性能 

基金项目 内蒙古农业大学校青年科技骨干基金(2017XQG-1);国家自然科学基金项目(31960292)

英文标题 Effects of Pore Structure in Cell Wall on Wood Properties and Processing Utilization

作者英文名 Liu Wenjing, Zhang Yujun

单位英文名 College of Materials Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China

英文摘要 Wood cell wall pores are the important channels for water transverse transport in wood and the important factor affecting wood drying rate and wood modification effect. The research on cell wall pore structure is beneficial for further understanding the microstructure, the physical and chemical properties and processing of wood. This paper reviews the composition, classification and specific size of wood cell wall pore, expounds their influences on the physical/mechanical properties and processing of wood, and concludes the existing problems in this current research. Suggestions are proposed to provide a theoretical and technical support for further research and practical production.

英文关键词 in wood cell wall pore;wood structure;wood property

起始页码 44

截止页码 48

投稿时间 2020/7/16

最后修改时间 2020/9/1

作者简介 刘文静,女,副教授,主要从事木材学、木质炭材料的研究,E-mail:wenjing-1999@163.com

分类号 S781;TS6

DOI 10.13348/j.cnki.sjlyyj.2020.0101.y

参考文献 [1] 赵广杰. 木材中的纳米尺度、纳米木材及木材-无机纳米复合材料[J]. 北京林业大学学报,2002,24(5/6):203-207.
[2] 刘一星, 赵广杰. 木材学[M]. 北京: 中国林业出版社, 2012.
[3] 郭宇, 李超, 李英洁, 等. 木材细胞壁与木材力学性能及水分特性之间关系研究进展[J]. 林产工业,2019,46(8):14-18.
[4] 李亚玲. 基于蒸腾作用的速生杨活立木改性研究[D]. 呼和浩特: 内蒙古农业大学, 2018.
[5] 孙海燕, 苏明垒, 吕建雄, 等. 细胞壁微纤丝角和结晶区对木材物理力学性能影响研究进展[J]. 西北农林科技大学学报(自然科学版),2019,47(5):50-58.
[6] ZAUER M, PFRIEM A, WAGENFÜHR A. Toward improved understanding of the cell-wall density and porosity of wood determined by gas pycnometry[J]. Wood Science and Technology, 2013, 47(6):1197-1211.
[7] 胡亚才, 范利武, 俞自涛, 等. 木材微结构对其传热特性影响的实验研究[J]. 工程热物理学报,2005,26(增刊1):210-212.
[8] HOU D, LI T, CHEN X, et al. Hydrophobic nanostructured wood membrane for thermally efficient distillation[J]. Science Advances, 2019, 5(8):eaaw3203. DOI:10.1126/sciadv.aaw3203
[9] 王东, 彭立民, 傅峰, 等. 腐朽木材的吸声性能[J]. 林业科学,2015,51(11):91-96.
[10] 张娅梅, 潘彪, 王丰. 马尾松木材径向与弦向抗弯性能及破坏特征的比较研究[J]. 林产工业,2017,44(3):26-29.
[11] MANTANIS G I. Chemical modification of wood by acetylation or furfurylation: a review of the present scaled-up technologies[J]. BioResources, 2017, 12(2):4478-4489.
[12] YANG R, ZHANG J, WANG S, et al. Effect of hydrophobic modification on mechanical properties of Chinese fir wood[J]. BioResources, 2018, 13(1):2035-2048.
[13] 石媛, 刘君良, 吕文华, 等. 酸、碱硅溶胶改性木材的制备与性能研究[J]. 木材工业,2019,33(1):21-24.
[14] 徐康. 微波预处理杨木浸渍密实化与高温热处理改性研究[D]. 长沙: 中南林业科技大学, 2014.
[15] 李晓东. 微波超声波技术在阻燃剂浸渍处理木材中的应用[J]. 化工进展,2005,24(12):1422-1425.
[16] VINDEN P, VINDEN P, TORGOVNIKOV G, et al. Microwave modification of Radiata pine railway sleepers for preservative treatment[J]. European Journal of Wood and Wood Products, 2011, 69(2):271-279.
[17] GIACOMOZZI D, JOUTSIMO O, ZELINKA S L. The processing of Pinus radiata: pore size distribution changes in the cell wall structure studied by pressure plate technique and mercury intrusion porosimetry[J]. BioResources, 2019, 14(2):2827-2841.
[18] 何盛, 徐军, 吴再兴, 等. 毛竹与樟子松木材孔隙结构的比较[J]. 南京林业大学学报(自然科学版),2017,41(2):157-162.
[19] PLOETZE M, NIEMZ P. Porosity and pore size distribution of different wood types as determined by mercury intrusion porosimetry[J]. European Journal of Wood and Wood Products, 2011, 69(4):649-657.
[20] YIN J, SONG K, LU Y, et al. Comparison of changes in micropores and mesopores in the wood cell walls of sapwood and heartwood[J]. Wood Science and Technology, 2015, 49(5):987-1001.
[21] 周云洁. 基于时域核磁共振技术的木材孔径分布研究[D]. 呼和浩特: 内蒙古农业大学, 2015.
[22] LIU W, WANG X, ZHANG M. Preparation of highly mesoporous wood-derived activated carbon fiber and the mechanism of its porosity development[J]. Holzforschung, 2017, 71(5):363-371.
[23] ALMEIDA G, HERNÁNDEZ R E. Influence of the pore structure of wood on moisture desorption at high relative humidities[J]. Wood Material Science & Engineering, 2007, 2(1):33-44.
[24] JANG E, KANG C. Changes in gas permeability and pore structure of wood under heat treating temperature conditions[J]. Journal of Wood Science, 2019, 65(1):1-9.
[25] 罗文圣, 赵广杰. 木材细胞壁的空隙构造及物质的输运过程[J]. 北京林业大学学报,2001,23(2):85-89.
[26] 宋坤霖. 杉木边心材转变过程中细胞壁结构与性能的变化[D]. 北京: 中国林业科学研究院, 2012.
[27] FAHLEN J, SALMEN L. Pore and matrix distribution in the fiber wall revealed by atomic force microscopy and image analysis[J]. Biomacromolecules, 2005, 6(1):433-438.
[28] 苌姗姗, 胡进波, 赵广杰. 不同干燥预处理对杨木应拉木孔隙结构的影响[J]. 北京林业大学学报,2011,33(2):91-95.
[29] DONALDSON L A, KROESE H W, HILL S J, et al. Detection of wood cell wall porosity using small carbohydrate molecules and confocal fluorescence microscopy[J]. Journal of Microscopy, 2015, 259(3):228-236.
[30] SENDEN T J, KNACKSTEDT M A, LYNE M B. Droplet penetration into porous networks: role of pore morphology[J]. Nordic Pulp & Paper Research Journal, 2000, 15(5):554-563.
[31] 夏金尉, 张耀丽, 蔡家斌. 蒸汽爆破开启落叶松木材细胞通道[J]. 福建农林大学学报(自然科学版),2013,42(5):543-547.
[32] ZHANG Y, CAI L. Mechanism for de-aspirating pits in subalpine fir by steam explosion prior to drying[J]. Drying Technology, 2009, 27(1):84-88.
[33] 鲍咏泽, 周永东. 柳杉锯材过热蒸汽干燥与常规干燥的比较[J]. 林业科学,2017,53(1):88-93.
[34] 杨琳, 马青原, 刘洪海, 等. 尾巨桉木材冷冻干燥特性[J]. 森林与环境学报,2018,38(3):277-283.
[35] 李荣荣, 王传贵, 刘成倩. 干燥工艺对枫香木材微观结构的影响研究[J]. 林产工业,2019,46(7):23-26.
[36] LV J, LIN Z, JIANG J, et al. Liquid penetration of freeze-drying and air-drying wood of plantation Chinese fir[J]. Journal of Forestry Research, 2005, 16(4):293-295.
[37] LOVIKKA V A, KHANJANI P, VÄISÄNEN S, et al. Porosity of wood pulp fibers in the wet and highly open dry state[J]. Microporous and Mesoporous Materials, 2016, 234:326-335.
[38] MOROZOVS A, KEKE A, FISERE L, et al. Wood modification with furfuryl alcohol and furfurylated wood durability in water[C]. 17th International Scientific Conference Engineering for Rural Development, Jelgava, Latvia, 2018.
[39] 秦建鲲, 白天, 邵亚丽, 等. 不同树种多层透明木材的制备与表征[J]. 北京林业大学学报,2018,40(7):113-120.
[40] 李艳. 微爆破处理对杨木薄板渗透性及软化效果的影响[D]. 北京: 北京林业大学, 2015.
[41] 戚红晨. 人工林赤桉木材抽提物特性与胶合微扰机理研究[D]. 长沙: 中南林业科技大学, 2011.

PDF全文 浏览全文

相关图谱

扫描二维码