数据资源: 科信所期刊全文

林火增长模型及应用软件



编号 lyqk003865

中文标题 林火增长模型及应用软件

作者 田晓瑞  舒立福  王明玉 

作者单位 中国林业科学研究院森林生态环境与保护研究所,国家林业局森林保护学重点实验室,北京 100091;中国林业科学研究院森林生态环境与保护研究所,国家林业局森林保护学重点实验室,北京 100091;中国林业科学研究院森林生态环境与保护研究所,国家林业局森林保护学重点实验室,北京 100091

期刊名称 世界林业研究 

年份 2012 

卷号 25

期号 1

栏目编号 1

栏目名称 专题论述 

中文摘要 火增长模型可以预测将要发生的林火行为,指导林火扑救和评估林火管理政策。文中分析了影响火模拟的主要因子,对当前主要的火增长模型,包括经验模型、半经验模型和物理模型进行了概述,并列举了应用比较广泛的火增长模拟软件包括Prometheus,Behave Plus和Farsite等的主要特征,讨论了火增长物理模型的局限性及未来发展方向。

关键词 林火  火增长模型  火模拟软件 

基金项目 国家林业局948项目(2011-4-57);中国科学技术大学火灾科学国家重点实验室开放课题(HZ2010-KF10)

英文标题 Fire Growth Models and Software

作者英文名 Tian Xiaorui,Shu Lifu and Wang Mingyu

单位英文名 Key Open Laboratory of Forest Protection,State Forestry Administration;Institute of Forest Ecology,Environment and Protection,Chinese Academy of Forestry,Beijing 100091,China;Key Open Laboratory of Forest Protection,State Forestry Administration;Institute of Forest Ecology,Environment and Protection,Chinese Academy of Forestry,Beijing 100091,China;Key Open Laboratory of Forest Protection,State Forestry Administration;Institute of Forest Ecology,Environment and Protection,Chinese Academy of Forestry,Beijing 100091,China

英文摘要 Fire growth model can predict fire behavior, which can guide fire fighting activities and assesses fire management policies. This paper analyzed the main factors affecting fire simulation, and summaried the current growth models including empirical, semi-empirical and physical models. The widely used fire growth simulation softwares were outlined in the paper, which include Prometheus, Behave Plus, Farsite, etc. Finally, the paper discussed the limitations of fire growth models and their future development.

英文关键词 forest fire;fire growth model;fire simulation software

起始页码 25

截止页码 29

投稿时间 2011/8/23

分类号 S762.2

参考文献 [1] Cary G J, Flannigan M D, Keane R E, et al. Relative importance of fuel management, ignition management and weather for area burned: evidence from five landscape-fire-succession models[J]. International Journal of Wildland Fire, 2009, 18(2): 147-156.
[2] Perry G L W. Current approaches to modelling the spread of wildland fire: a review[J]. Progress in Physical Geography, 1998, 22(2):222-245.
[3] Fons W R. Analysis of fire spread in light forest fuels[J]. Journal of Agriculture Research, 1946, 72(3): 93-121.
[4] Kourtz P, Nozaki S, O'Regan W G. Forest fires in the computer-a model to predict the perimeter location of a forest fire:information report FF-X-65. Petawawa,Ontario, Canada:Petawawa National Forest Research Institute, Canadian Forest Service, 1977.
[5] Richards G D. The properties of elliptical wildfire growth for time dependent fuel and meteorological conditions[J]. Combustion Science and Technology, 1994, 95(1/6): 357-383.
[6] Finney M A. FARSITE: fire area simulator-model development and evaluation:RMRS-RP-4. Ogden, UT: Rocky Maintain Research Station,USDA Forest Service, 1998.
[7] Richard C. Rothernel-a mathematical model for predicting fire spread in wildfire fuels:research paper INT-115. USDA Forest Service, 1972.
[8] Hanson H P, Bradley M M, Bossert J E, et a1. The potential and promise of physics-based wildfire simulation[J]. Environmental Science & Policy, 2000,3(4): 161-172.
[9] 王正非.山火初始蔓延速度测算法[J].山地研究,1983,1(2):42-51.
[10] 王海晖,朱霁平.森林地表火行为估算的数学模型[J].火灾科学,1994,3(1):33-41.
[11] 袁宏永,范维澄. 由航空影像及DTM测量林火行为的数学模型与方法[J]. 火灾科学,1995,4(2):3l-51.
[12] Noble I R, Bary G A V, Gill A M. McArthur's fire danger meters expressed as equations[J]. Australian Journal of Ecology, 1980, 5(2): 201-203.
[13] Emmons H W. Fire in the forest[J]. Fire Research Abstracts and Reviews, 1963, 5(3): 163.
[14] Forestry Canada Fire Danger Group. Development and structure of the Canadian forest fire behavior prediction system: information report ST-X-3. Ottawa, ON:Science and Sustainable Development Directorate,Forestry Canada, 1992.
[15] Cheney N P, Gould J S, Catchpole W R. The influence of fuel, weather, and fire shape variables on fire-spread in grasslands[J]. International Journal of Wildland Fire, 1993, 3(1):31-44.
[16] Richards G D. An elliptical growth model of forest fire fronts and its numerical solution[J]. International Journal for Numerical Methods in Engineering, 1990, 30(6):1163-1179.
[17] Albini F A. Wildland fire spread by radiation:a model including fuel cooling by natural convection[J]. Combustion Science and Technology, 1986,45(1/2): 101-113.
[18] Hottel H C, Williams G C, Steward F R. The modeling of fire spread through a fuel bed. Tenth International Symposium on Combustion,the Combustion Institute, Pittsburgh, Pennsylvania, United States, 1965: 997-1007.
[19] Asensio M I, Ferragut L. On a wildland fire model with radiation[J].International Journal for Numerical Methods in Engineering, 2002, 54(1): 137-157.
[20] Mandel J, Lynn S B, Jonathan D B, et al. A wildfire model with data assimilation[J]. Mathematics and Computers in Simulation, 2008, 79(3): 584-606.
[21] Mandel J, Jonathan D B, Coen J L, et al. Data assimilation for wildland fires: ensemble Kalman filters in coupled atmosphere-surface models[J]. IEEE Control Systems, 2009, 29(3): 47-65.
[22] Sun R, Krueger S K, Jenkins M A, et al. The importance of fire-atmosphere coupling and boundary-layer turbulence to wildfire spread[J]. International Journal of Wildland Fire, 2009, 18(1): 50-60.
[23] Linn R, Reisner J, Colman J J, et al. Studying wildfire behavior using FIRETEC[J]. International Journal of Wildland Fire, 2002, 11(4): 233-246.
[24] Mell W, Jenkins M A, Gould J, et al. A physics based approach to modelling grassland fires[J]. International Journal of Wildland Fire, 2007, 16(1): 1-22.
[25] Dupuy J, Larini M. Fire spread through a porous forest fuel bed: a radiative and convective model including fire-induced flow effects[J]. International Journal of Wildland Fire, 1999, 9(3):155-172.
[26] Porterie B, Morvan D, Loraud J C, et al. A multiphase model for predicting line fire propagation// Domingos X V. Forest Fire Research: Proceedings of 3rd International Conference on Forest Fire Research and 14th Conference on Fire and Forest Meteorology, Louso, Coimbra, Portugal, 1998:343-360.
[27] Morvan D, Dupuy J L. Modelling the propagation of a wildfire through a Mediterranean shrub using a multiphase formulation[J]. Combustion & Flame, 2004, 138(3): 199-210.
[28] Coen J L, Clark T L, Latham D. Coupled atmosphere-fire model simulations in various fuel types in complex terrain. 4th Symposium of Fire and Forest Meteorology, Reno, Nevada, United States, 2001:39-42.
[29] Clark T L, Coen J L, Latham D. Description of a coupled atmosphere-fire model[J]. International Journal of Wildland Fire, 2004, 13(1): 49-64.
[30] Clark T L, Jenkins M A, Coen J, et al. A coupled atmospheric-fire model: convective froude number and dynamic fingering[J]. International Journal of Wildland Fire, 1996, 6(4): 177-190.
[31] Clark T L, Jenkins M A, Coen J, et al. A coupled atmospheric-fire model: convective feedback on fire line dynamics[J]. Journal of Applied Meteorology, 1996, 35(6): 875-901.
[32] Bryce R, Richards G. A computer algorithm for simulating spread of wildland fire perimeters for heterogeneous fuel and meteorological conditions[J]. International Journal of Wildland Fire, 1995, 5(2):73-79.
[33] Andrews P L. BehavePlus fire modeling system: past, present, and future//Proceedings of 7th Symposium on Fire and Forest Meteorology,Bar Harbor, Maine, USA:2007.
[34] Andrews P L. BehavePlus fire modeling system, version 5.0: variables:general technical report RMRS-GTR-213. Fort Collins, Colorado:Rocky Mountain Research Station,USDA, Forest Service.2008.
[35] Rothermel R C. Predicting behavior of the 1988 Yellowstone Fires: projections versus reality[J]. International Journal of Wildland Fire, 1991, 1(1): 1-10.
[36] Van Wagner C E. Conditions for the start and spread of crown fire[J].Canadian Journal of Forest Research, 1977, 7(1): 23-34.
[37] Van Wagner C E. Prediction of crown fire behavior in two stands of jack pine[J]. Canadian Journal of Forest Research, 1993, 23(3):442-449.
[38] Thomas P H. Size of flames from natural fires// Muntz P. Proceedings of the ninth symposium on combustion. New York: Academic Press,1962: 844-859.
[39] Byram G M. Combustion of forest fuels // Davis K P. Forest fire: control and use.2nd edition. New York: McGraw-Hill, 1959: 61-89.
[40] Sullivan A L, Knight I K. A hybrid cellular automata/semi-physical model of fire growth[J]. Complexity International, 2005(12): 64-73.
[41] Andrea M D, Fiorucci P, Holmes T P. A stochastic forest fire model for future land cover scenarios assessment[J]. Natural Hazards and Earth System Sciences, 2010, 10(10):2161-2167.
[42] Achtemeier G L. Rabbit Rules:an application of Stephen Wolfram's new kind of science to fire spread modeling. 5th Symposium on Fire and Forest Meteorology, Orlando, Florida, United States, 16-20 November, 2003: 1-10.

PDF全文 浏览全文

相关图谱

扫描二维码