编号
lyqk004257
中文标题
木材胶合界面性能表征技术研究进展
作者单位
广西大学林学院,南宁 530004;中国林业科学研究院木材工业研究所,北京 100091;中国林业科学研究院木材工业研究所,北京 100091;广西大学林学院,南宁 530004;中国林业科学研究院木材工业研究所,北京 100091
期刊名称
世界林业研究
年份
2013
卷号
26
期号
5
栏目编号
1
栏目名称
专题论述
中文摘要
木材胶合界面是指同时包含木材细胞壁和胶粘剂的区域。在木质胶合产品的加工工艺选择与使用性能评价中,胶合界面发挥着重要作用,其中胶粘剂渗透性能和界面力学性能是重要的评判标准。目前,用于表征胶合界面性能的技术包括光学显微技术、电子显微技术、X射线成像技术、微观力学测试技术等。文中通过对比各表征技术,提出进一步研究界面结合强度的表征、微观力学模型的建立、界面力学特性与木质胶合产品宏观性能的关系等将是未来的探索方向。
基金项目
中国林业科学研究院基本科研业务费专项(CAFINT2013C07);国家自然科学基金青年科学基金项目(31000272)
英文标题
Research Progress in Characterization Techniques of Wood Bonding Interface
作者英文名
Qin Lizhe,Lin Lanying,Luo Jianju and Fu Feng
单位英文名
Forestry College,Guangxi University,Nanning 530004,China;Research Institute of Wood Industry,Chinese Academy of Forestry,Beijing 100091,China;Research Institute of Wood Industry,Chinese Academy of Forestry,Beijing 100091,China;Forestry College,Guangxi University,Nanning 530004,China;Research Institute of Wood Industry,Chinese Academy of Forestry,Beijing 100091,China
英文摘要
Bonding interface of wood is the area containing both the wood cell wall and the adhesives. In the selection of processing technique and the evaluation of performance for glued wood products, bonding interface plays an important role, in which adhesive permeability and interfacial mechanical properties are paramount criteria. Currently, optical microscope technique, electron microscope technique, X-Ray imaging technique and micromechanics testing technique are used to characterize the properties of bonding interface. By comparing those techniques, the paper concluded that the future research should be focused on characterization of interface bonding strength, establishment of micro-mechanical model, and relationship between the interface mechanical properties and the macroscopic properties of glued wood products.
英文关键词
bonding interface;permeability;interface mechanics;characterization technique
起始页码
59
截止页码
63
投稿时间
2013/5/14
分类号
TS653
参考文献
[1] Bogetti T A, Wang T, Vanlandingham M R. Characterization of nanoscale property variations in polymer composite systems:2 numerical modeling[J]. Composites Part A: Applied Science and Manufacturing, 1999, 30(1): 85-94.
[2] Brady D E, Kamke F A. Effect of hot-pressing parameters on resin penetration[J]. Forest Products Journal, 1988, 38(11): 63-68.
[3] Kamke F A, Keane D T, Loferski J R, et al. 3D visualization of an adhesive bondline[C].Wood-Based Composites Center Advisory Board Meeting, Saint Paul, Minnesota, 24th-25th April, 2004: 12.
[4] Pizzi A. Advanced wood adhesives technology[M]. New York: CRC, 1994.
[5] 马红霞. 毛竹/杨木复合材料界面胶合性能及其影响因素研究[D]. 北京: 中国林业科学研究院, 2009.
[6] 李凯夫, 陈雄伟. 木质材料界面与界面力学[M]. 广东: 广东科技出版社, 2003.
[7] Hancock W V, Northcott P L. Microscopic identification of undercured glue bonds in plywood[J]. Forest Products Journal, 1961, 11(7): 316-319.
[8] Hare D A, Kutscha N P. Microscopy of eastern spruce plywood gluelines[J]. Wood Science, 1974, 6(3): 294-304.
[9] Kutscha N P, Caster R W. Factors affecting the bond quality of hem-fir finger joints[J]. Forest Products Journal, 1987, 37(4): 43-48.
[10] Sernek M, Resnik J, Kamke F A. Penetration of liquid urea-formaldehyde adhesive into beech wood[J]. Wood and Fiber Science, 1999, 31(1): 41-48.
[11] Johnson S E, Kamke F A. Quantitative analysis of gross adhesive penetration in wood using fluorescence microscopy[J]. Journal of Adhesion, 1992, 40(1): 47-61.
[12] Furuno T, Hse C Y, Cote W A. Observation of microscopic factors affecting strength and dimensional properties of hardwood flakeboard[C]//Proceedings of the 17th Washington State University International Particleboard/Composite Materials Series,Pullman, Washington, 29-31 March, 1983: 297-312.
[13] Cyr P L, Riedl B, Wang X M, et al. Urea-melamine-formaldehyde (UMF) resin penetration in medium-density fiberboard (MDF) wood fibers[J]. Journal of Adhesion Science and Technology, 2006, 20(8): 787-801.
[14] Gindl W, Dessipri E, Wimmer R. Using UV-microscopy to study diffusion of melamine-urea-formaldehyde resin in cell walls of spruce wood[J]. Holzforschung, 2002, 56(1): 103-107.
[15] Rapp A O, Bestgen H, Adam W, et al. Electron loss spectroscopy (EELS) for quantification of cell-wall penetration of a melamine resin[J]. Holzforschung, 1999, 53(2): 111-117.
[16] Harada H, Davies G W, Plomley Y K F. Preliminary microscopic studies of wood structure and adhesion in plywood[J]. Forest Products Journal, 1968, 18(2): 86-90.
[17] Saiki H. The effect of the penetration of adhesives into cell walls on the failure of wood bonding[J]. Mokuzai Gakkaishi, 1984, 30(1): 88-92.
[18] Gindl W. SEM and UV-microscopic investigation of glue lines in Parallam® PSL[J]. Holz als Roh-und Werkstoff, 2001, 59(3): 211-214.
[19] Bolton A J, Domwppdoe J M, Davies D A. The validity of the use of SEM/EDAX as a tool for the detection of UF resin penetration into wood cell walls in particleboards[J]. Wood Science and Technology, 1988, 22(4): 345-356.
[20] Singh A P, Anderson C R, Warnes J M, et al. The effect of planing on the microscopic structure of Pinus radiata wood cells in relation to penetration of PVA glue[J]. Holz als Roh-und Werkstoff, 2002, 60(5): 333-341.
[21] Shaler S M, Keane D T, Wang H, et al. Microtomography of cellulosic structures[C]// TAPPI Proceedings of Process and Product Quality Conference, Milwaukee, Wisconsin, USA, 18-23 October, 1998: 89-96.
[22] Buckley C J, Phanopoulos C, Khaleque N, et al. Examination of the penetration of polymeric di-phenyl-diisocyanate (PMDI) into wood structure using chemical-state x-ray microscopy[J]. Holzforschung, 2002, 56(2): 215-222.
[23] Wimmer R, Lucas B N, Tsui T Y, et al. Longitudinal hardness and Young's modulus of spruce tracheid secondary walls using nanoindentation technique[J]. Wood Science and Technology, 1997, 31(2): 131-141.
[24] 江泽慧, 余雁, 费本华, 等. 纳米压痕技术测量管胞次生壁S2层的纵向弹性模量和硬度[J]. 林业科学, 2004, 40(2): 113-118.
[25] Yan W, Siqun W, Dingguo Z. Use of nanoindentation and silviscan to determine the mechanical properties of 10 hardwood species[J]. Wood and Fiber Science, 2009, 41(1): 64-73.
[26] Konnerth J, Valla A, Gindl W. Nanoindentation mapping of a wood-adhesive bond[J]. Applied Physics A: Materials Science & Processing, 2007, 88(2): 371-375.
[27] Asif S A S, Wahl K J, Colton R J, et al. Quantitative imaging of nanoscale mechanical properties using hybrid nanoindentation and force modulation[J]. Journal of Applied Physics, 2001, 90(3): 1192-1200.
[28] Kos A B, Hurley D C. Nanomechanical mapping with resonance tracking scanned probe microscope[J]. Measurement Science & Technology, 2008, 19(1): 1-9.
[29] 易楠, 顾轶卓, 李敏, 等. 碳纤维复合材料界面结构的形貌与尺寸的表征[J]. 复合材料学报, 2010,27(5): 36-40.
[30] Balooch G, Marshall G, Marshall S, et al. Evaluation of a new modulus mapping technique to investigate microstructural features of human teeth[J]. Journal of Biomechanics, 2004, 37(8):1223-1232.
[31] Nizam B R H, Lim C T. Nanoindentation of teeth:a review[J]. 实验力学, 2006, 21(1): 35-50.
[32] Uskokovic P, Tang C, Tsui C, et al. Micromechanical properties of a hydroxyapatite/poly-l-lactide biocomposite using nanoindentation and modulus mapping[J]. Journal of the European Ceramic Society, 2007, 27(2): 1559-1564.
[33] Gillen K T, Terrill E R, Winter R M. Modulus mapping of rubbers using micro-and nano-indentation techniques[J]. Rubber Chemistry and Technology, 2001, 74(3): 428-450.
[34] Ciprari D, Jacob K, Tannenbaum R. Characterization of polymer nanocomposite interphase and its impact on mechanical properties[J]. Macromolecules, 2006, 39(19): 6565-6573.
[35] Balani K, Agarwal A. Damping behavior of carbon nanotube reinforced aluminum oxide coatings by nanomechanical dynamic modulus mapping[J]. Journal of Applied Physics, 2008, 104(6):517-523.
[36] Ganor Y, Shilo D. Modulus mapping of nanoscale closure variants in Ni-Mn-Ga[J]. Applied Physics Letters, 2008, 93(3): 905-908.
PDF全文
浏览全文