编号
010028605
推送时间
20210412
研究领域
森林生态
年份
2021
类型
期刊
语种
英语
标题
Establishment of Regional Phytoremediation Buffer Systems for Ecological Restoration in the Great Lakes Basin, USA. I. Genotype × Environment Interactions
来源期刊 forest
期
第286期
发表时间
20210402
关键词
ecosystem services;
multi-environmental trials (MET);
phenotypic plasticity;
phyto buffers;
phyto-recurrent selection;
phytotechnologies;
poplars;
Populus;
摘要
Poplar remediation systems are ideal for reducing runoff, cleaning groundwater, and delivering ecosystem services to the North American Great Lakes and globally. We used phyto-recurrent selection (PRS) to establish sixteen phytoremediation buffer systems (phyto buffers) (buffer groups: 2017 × 6; 2018 × 5; 2019 × 5) throughout the Lake Superior and Lake Michigan watersheds comprised of twelve PRS-selected clones each year. We tested for differences in genotypes, environments, and their interactions for health, height, diameter, and volume from ages one to four years. All trees had optimal health. Mean first-, second-, and third-year volume ranged from 71 ± 26 to 132 ± 39 cm3; 1440 ± 575 to 5765 ± 1132 cm3; and 8826 ± 2646 to 10,530 ± 2110 cm3, respectively. Fourth-year mean annual increment of 2017 buffer group trees ranged from 1.1 ± 0.7 to 7.8 ± 0.5 Mg ha?1 yr?1. We identified generalist varieties with superior establishment across a broad range of buffers (‘DM114’, ‘NC14106’, ‘99038022’, ‘99059016’) and specialist clones uniquely adapted to local soil and climate conditions (‘7300502’, ‘DN5’, ‘DN34’, ‘DN177’, ‘NM2’, ‘NM5’, ‘NM6’). Using generalists and specialists enhances the potential for phytoremediation best management practices that are geographically robust, being regionally designed yet globally relevant. View Full-Text
服务人员
王璐
服务院士
蒋有绪
PDF文件
浏览全文