编号 030033602
推送时间 20220328
研究领域 森林经理
年份 2022
类型 期刊
语种 英语
标题 Estimating the performance of multi-rotor unmanned aerial vehicle structure-from-motion (UAV(sfm)) imagery in assessing homogeneous and heterogeneous forest structures: a comparison to airborne and terrestrial laser scanning
来源期刊 SOUTH AFRICAN JOURNAL OF GEOMATICS
期 第336期
发表时间 20220201
关键词 Unmanned Aerial Vehicles; Structure-from-Motion; Aerial Laser Scanning; Terrestrial Laser Scanning; Tree Height; Diameter at Breast Height; Biomass;
摘要 The implementation of Unmanned Aerial Vehicles (UAVs) and Structure-from-Motion (SfM) photogrammetry in assessing forest structures for forest inventory and biomass estimations has shown great promise in reducing costs and labour intensity while providing relative accuracy. Tree Height (TH) and Diameter at Breast Height (DBH) are two major variables in biomass assessment. UAV-based TH estimations depend on reliable Digital Terrain Models (DTMs), while UAV-based DBH estimations depend on reliable dense photogrammetric point cloud. The main aim of this study was to evaluate the performance of multi-rotor UAV photogrammetric point cloud in estimating homogeneous and heterogeneous forest structures, and their comparison to more accurate LiDAR data obtained from Aerial Laser Scanners (ALS), Terrestrial Laser Scanners (TLS), and more conventional means like manual field measurements. TH was assessed using UAV(SfM) and LiDAR point cloud derived DTMs, while DBH was assessed by comparing UAV(SfM )photogrammetric point cloud to LiDAR point cloud, as well as to manual measurements. The results obtained in the study indicated that there was a high correlation between UAV(SfM) TH and ALS(LiDAR) TH (R-2 = 0.9258) for homogeneous forest structures, while a lower correlation between UAV(SfM) TH and TLSLiDAR TH (R-2 = 0.8614) and UAV(SfM) TH and ALS(LiDAR) TH (R-2 = 0.8850) was achieved for heterogeneous forest structures. A moderate correlation was obtained between UAV(SfM) DBH and field measurements (R-2 = 0.5955) for homogenous forest structures, as well as between UAV(SfM) DBH and TLSLiDAR DBH (R-2 = 0.5237), but a low correlation between UAV(SfM) DBH and UAV(LiDAR) DBH (R-2 = 0.1114). The study demonstrated that UAV acquired imagery can be used to accurately estimate TH in both forest types, but has challenges estimating DBH. The research does not suggest that UAV(SfM) serves as a replacement for more high-cost and accurate LiDAR data, but rather as a cheaper adequate alternative in forestry management depending on accuracy requirements.
服务人员 付贺龙
服务院士 唐守正
PDF文件 浏览全文