数据资源: 林业专题资讯

Simulating the Effects of Thinning Events on Forest Growth and Water Services Asks for Daily Analysis of Underlying Processes



编号 010032501

推送时间 20220110

研究领域 森林生态 

年份 2022 

类型 期刊 

语种 英语

标题 Simulating the Effects of Thinning Events on Forest Growth and Water Services Asks for Daily Analysis of Underlying Processes

来源期刊 forest

第325期

发表时间 20211208

关键词 ack forest;  forest hydrology;  drought analysis;  thinning;  resolution; 

摘要 Forest growth function and water cycle are affected by climatic conditions, making climate-sensitive models, e.g., process-based, crucial to the simulation of dynamics of forest and water interactions. A rewarded and widely applied model for forest growth analysis and management, 3PG, is a physiological process-based forest stand model that predicts growth. However, the model runs on a monthly basis and uses a simple soil-water module. Therefore, we downscale the temporal resolution to operate daily, improve the growth modifiers and add a responsive hydrological sub-model to represents the key features of a snow routine, a detailed soil-water model and a separated soil-evaporation calculation. Thereby, we aim to more precisely analyze the effects of thinning events on forest productivity and water services. The novel calibrated 3PG-Hydro model was validated in Norway spruce sites in Southern Germany and confirmed improvements in building forest processes (evapotranspiration) and predicting forest growth (biomass, diameter, volume), as well as water processes and services (water recharge). The model is more sensitive to forest management measures and variability in soil water by (1) individualization of each site’s soil, (2) simulation of percolation and runoff processes, (3) separation of transpiration and evapotranspiration to predict good evapotranspiration even if high thinning is applied, (4) calculation in daily time steps to better simulate variation and especially drought and (5) an improved soil-water modifier. The new 3PG-Hydro model can, in general, better simulate forest growth (stand volume, average diameter), as well as details of soil and water processes after thinning events. The novel developments add complexity to the model, but the additions are crucial and relevant, and the model remains an easy-to-handle forest simulation tool. View Full-Text

服务人员 王璐

服务院士 蒋有绪

PDF文件 浏览全文

相关图谱

扫描二维码