数据资源: 林业专题资讯

Integration of Multi-Sensor Data to Estimate Plot-Level Stem Volume Using Machine Learning Algorithms-Case Study of Evergreen Conifer Planted Forests in Japan



编号 030025302

推送时间 20200824

研究领域 森林经理 

年份 2020 

类型 期刊 

语种 英语

标题 Integration of Multi-Sensor Data to Estimate Plot-Level Stem Volume Using Machine Learning Algorithms-Case Study of Evergreen Conifer Planted Forests in Japan

来源期刊 REMOTE SENSING

第253期

发表时间 20200521

关键词 UAS;  stem volume;  TLS;  SAR;  random forest;  support vector;  multiple regression;  forest;  biophysical parameter; 

摘要 The development of new methods for estimating precise forest structure parameters is essential for the quantitative evaluation of forest resources. Conventional use of satellite image data, increasing use of terrestrial laser scanning (TLS), and emerging trends in the use of unmanned aerial systems (UASs) highlight the importance of modern technologies in the realm of forest observation. Each technology has different advantages, and this work seeks to incorporate multiple satellite, TLS- and UAS-based remote sensing data sets to improve the ability to estimate forest structure parameters. In this paper, two regression analysis approaches are considered for the estimation: random forest regression (RFR) and support vector regression (SVR). To collect the dependent variable, in situ measurements of individual tree parameters (tree height and diameter at breast height (DBH)) were taken in a Japanese cypress forest using the nondestructive TLS method, which scans the forest to obtain dense and accurate point clouds under the tree canopy. Based on the TLS data, the stem volume was then computed and treated as ground truth information. Topographic and UAS information was then used to calculate various remotely sensed explanatory variables, such as canopy size, canopy cover, and tree height. Canopy cover and canopy shapes were computed via the orthoimages derived from the UAS and watershed segmentation method, respectively. Tree height was computed by combining the digital surface model (DSM) from the UAS and the digital terrain model (DTM) from the TLS data. Topographic variables were computed from the DTM. The backscattering intensity in the satellite imagery was obtained based on L-band (Advanced Land Observing Satellite-2 (ALOS-2) Phased Array type L-band Synthetic Aperture Radar-2 (PALSAR-2)) and C-band (Sentinel-1) synthetic aperture radar (SAR). All satellite (10-25 m resolution), TLS (3.4 mm resolution) and UAS (2.3-4.6 cm resolution) data were then combined, and RFR and SVR were trained; the resulting predictive powers were then compared. The RFR method yielded fitting R-2 up to 0.665 and RMSE up to 66.87 m(3)/ha (rRMSE = 11.95%) depending on the input variables (best result with canopy height, canopy size, canopy cover, and Sentinel-1 data), and the SVR method showed fitting R-2 up to 0.519 and RMSE up to 80.12 m(3)/ha (rRMSE = 12.67%). The RFR outperformed the SVR method, which could delineate the relationship between the variables for better model accuracy. This work has demonstrated that incorporating various remote sensing data to satellite data, especially adding finer resolution data, can provide good estimates of forest parameters at a plot level (10 by 10 m), potentially allowing advancements in precision forestry.

服务人员 付贺龙

PDF文件 浏览全文

相关图谱

扫描二维码