数据资源: 林业专题资讯

Quantification of Lichen Cover and Biomass Using Field Data, Airborne Laser Scanning and High Spatial Resolution Optical Data—A Case Study from a Canadian Boreal Pine Forest



编号 010024403

推送时间 20200622

研究领域 森林生态 

年份 2020 

类型 期刊 

语种 英语

标题 Quantification of Lichen Cover and Biomass Using Field Data, Airborne Laser Scanning and High Spatial Resolution Optical Data—A Case Study from a Canadian Boreal Pine Forest

来源期刊 forest

第244期

发表时间 20200616

关键词 lichen;  biomass;  pine;  remote sensing;  woodland caribou; 

摘要 Ground-dwelling macrolichens dominate the forest floor of mature upland pine stands in the boreal forest. Understanding patterns of lichen abundance, as well as environmental characteristics associated with lichen growth, is key to managing lichens as a forage resource for threatened woodland caribou (Rangifer tarandus caribou). The spectral signature of light-coloured lichen distinguishes it from green vegetation, potentially allowing for mapping of lichen abundance using multi-spectral imagery, while canopy structure measured from airborne laser scanning (ALS) of forest openings can indirectly map lichen habitat. Here, we test the use of high-resolution KOMPSAT (Korea Multi-Purpose Satellite-3) imagery (280 cm resolution) and forest structural characteristics derived from ALS to predict lichen biomass in an upland jack pine forest in Northeastern Alberta, Canada. We quantified in the field lichen abundance (cover and biomass) in mature jack pine stands across low, moderate, and high canopy cover. We then used generalized linear models to relate lichen abundance to spectral data from KOMPSAT and structural metrics from ALS. Model selection suggested that lichen abundance was best predicted by canopy cover (ALS points > 1.37 m) and to a lesser extent blue spectral data from KOMPSAT. Lichen biomass was low at plots with high canopy cover (98.96 g/m2), while almost doubling for plots with low canopy cover (186.30 g/m2). Overall the model fit predicting lichen biomass was good (R2 c = 0.35), with maps predicting lichen biomass from spectral and structural data illustrating strong spatial variations. High-resolution mapping of ground lichen can provide information on lichen abundance that can be of value for management of forage resources for woodland caribou. We suggest that this approach could be used to map lichen biomass for other regions.

服务人员 王璐

PDF文件 浏览全文

相关图谱

扫描二维码