编号
lyqk007112
中文标题
中国森林火灾发生规律及预测模型研究
作者单位
1. 国家林业局昆明勘察设计院, 昆明 650216;
2. 延安市林业局, 陕西延安 716000;
3. 西安市户县林业局, 西安 710300
期刊名称
世界林业研究
年份
2018
卷号
31
期号
5
栏目编号
2
栏目名称
各国林业
中文摘要
量化分析森林火灾发生规律能为预测和防治森林火灾提供科学依据。文中采用四参数Weibull分布描述了我国森林火灾发生次数和火场面积分布规律,运用Spearman相关系数分析承灾主体因子、灾害管理因子、孕灾环境因子与森林火灾发生次数、面积间关系,基于全国森林火灾数据分别建立灰色系统理论模型、BP人工神经网络模型和时间序列ARIMA模型,并采用Markov随机过程改进已建立模型。结果表明,我国森林火灾发生次数分布呈左偏正态分布,火场面积呈倒J型分布,火灾次数和火场面积分布模型拟合决定系数分别为0.63和0.66;承灾主体、孕灾环境和灾害管理对森林火灾次数和火场面积影响程度依次减小,人工林面积、累年年平均气温、年降雨量平均差值、年最低气温平均日数与森林火灾发生具有明显相关性,影响森林火灾的因子与森林火灾发生次数、火场面积间存在指数型关系;不同模型对森林火灾发生次数和火场面积拟合优度次序为BP模型、GM(1,1)-Markov模型、BP-Markov模型、GM(1,1)模型、ARIMA模型、ARIMA-Markov模型,采用Markov过程能显著改进GM(1,1)预测模型对火灾随机性的预测效果,可以更好地反映森林火灾发生规律。
关键词
森林火灾
灰色模型
Markov链
人工神经网络
ARIMA模型
气象因子
中国
基金项目
国家林业局昆明勘察设计院项目“林地‘一张图’蓄积量更新研究”(2014071501)。
英文标题
A Study of Regularity and Prediction Model for Forest Fire in China
作者英文名
Wu Heng, Zhu Liyan, Liu Zhijun, Kong Lei, Guo Xiaoyang, Zhang Feng
单位英文名
1. Kuming Survey and Design Institute, State Forestry Adminitration, Kunming 650216, China;
2. Yan'an Forestry Bureau, Yan'an 716000, Shaanxi, China;
3. Huxian Forestry Bureau, Xi'an 710300, China
英文摘要
Quantitative analysis of forest fire regularity provides a scientific basis for forest fire prediction and effective prevention. 4-Parameters Weibull model was used for describing forest fire frequency, burned area and its distribution. Spearman indicator was applied to analyze the correlation between forest fire frequency & burned area and the various factors, including hazard bearing body, environmental factor, and disaster management. Grey model, BP artificial neural network model and ARIMA model were established based on the forest fire data nationwide, and Markov chain was used to modify these models. The results showed that forest fire occurrences are presented as left skewed normal distribution and the burned area as inverted J shape, while their coefficients of fitting are 0.63 and 0.66 respectively; the impacts of hazard bearing body, environmental factor, and disaster management on forest fire frequency and burned area go down gradually, while plantation area, mean annual temperature, amplitude of annual rainfall difference, days with annual minimum temperature significantly relate to forest fire frequency and burned area, and exponential relationship exists between forest fire frequency & burned area and the influencing factors. The fitting for forest fire frequency and burned area by various models showed different goodness, which could be ordered by BP model > GM (1, 1) -Markov model > BP-Markov model > GM (1, 1) model > ARIMA model > ARIMA-Markov model, and Markov process can significantly modify the predictability and randomness of GM(1,1), which could contribute to better prediction of fire regularity.
英文关键词
forest fire;grey model;Markov chain;artificial neural network;ARIMA model;meteorological factor;China
起始页码
64
截止页码
70
投稿时间
2018/3/7
最后修改时间
2018/7/15
作者简介
吴恒(1990-),男,硕士,研究方向为林业调查和森林资源监测,E-mail:wuheng@nwsuaf.edu.cn。
分类号
S762
DOI
10.13348/j.cnki.sjlyyj.2018.0054.y
参考文献
[1] 狄丽颖, 孙仁义. 中国森林火灾研究综述[J]. 灾害学, 2007, 22(4):118-123.
[2] 舒立福, 田晓瑞, 寇晓军. 林火研究综述(I):研究热点与进展[J]. 世界林业研究, 2003, 16(3):37-40.
[3] 舒立福, 张小罗, 戴兴安, 等. 林火研究综述(Ⅱ):林火预测预报[J]. 世界林业研究, 2003, 16(4):34-37.
[4] SCHENK K, DROSSEL B, SCHWABL F. Self-organized critical forest-fire model on large scales[J]. Physical Review, 2002(65):026135.
[5] PER B, KAN C, CHAO T. A forest-fire model and some thoughts on turbulence[J]. Physics Letters A, 1990, 147(5):297-300.
[6] 张玉红. 黑龙江省森林火灾的时空分布[J]. 哈尔滨师范大学自然科学学报, 2002, 18(5):95-100.
[7] 田晓瑞, 舒立福, 王明玉,等. 西藏森林火灾时空分布规律研究[J]. 火灾科学, 2007, 16(1):10-14.
[8] 茅史亮, 杨幼平, 贾伟江, 等. 浙江森林火灾发生规律与发展趋势研究[J]. 浙江林业科技, 2004, 24(1):16-20.
[9] 田晓瑞, 刘晓东, 舒立福, 等. 中国森林火灾周期振荡的小波分析[J]. 火灾科学, 2007, 16(1):55-59.
[10] 傅泽强, 孙启宏, 蔡运龙, 等. 基于灰色系统理论的森林火灾预测模型研究[J]. 林业科学, 2002, 38(5):95-100.
[11] 苏立娟, 何友均, 陈绍志. 1950-2010年中国森林火灾时空特征及风险分析[J]. 林业科学, 2015, 51(1):88-96.
[12] 李德, 牛树奎, 龙先华, 等. 四川省森林火灾与气象因子的关系[J]. 西北农林科技大学学报(自然科学版), 2013, 41(6):67-74.
[13] 曲智林, 胡海清. 基于气象因子的森林火灾面积预测模型[J]. 应用生态学报, 2007, 18(12):2705-2709.
PDF全文
浏览全文