数据资源: 科信所期刊全文

林火干扰对森林土壤活性有机碳影响的研究



编号 lyqk008583

中文标题 林火干扰对森林土壤活性有机碳影响的研究

作者 胡海清  罗斯生  罗碧珍  魏书精  刘菲 

作者单位 1. 东北林业大学林学院, 哈尔滨 150040;
2. 广东省森林培育与保护利用重点实验室, 广东省林业科学研究院, 广州 510520

期刊名称 世界林业研究 

年份 2020 

卷号 33

期号 5

栏目编号 1

栏目名称 专题论述 

中文摘要 土壤活性有机碳作为森林土壤有机碳的活跃成分,在凋落物分解和土壤碳循环中发挥着重要作用。林火干扰通过改变土壤底物的数量和理化性质进而影响土壤活性有机碳,因而阐明林火干扰对土壤活性有机碳的影响是开展森林碳循环研究的基础。文中以6种土壤活性有机碳为研究对象,分别阐述林火干扰对土壤活性有机碳影响的研究进展。针对目前研究现状及存在问题,认为应进一步深化探究林火干扰后土壤微生物活性变化机制对土壤活性有机碳的影响,揭示土壤碳库平衡的影响机理;加强林火干扰后C-N耦合循环特征的研究;深入研究林火干扰后影响土壤活性有机碳的内在因素和外在因素的相互作用,综合评价林火干扰对土壤活性有机碳的短期与长期影响;加强林火干扰—土壤碳库—全球气候变化的交互关系研究,深入探讨林火干扰与土壤活性有机碳的相互作用关系及影响机理。

关键词 林火干扰  土壤有机碳  有机碳组分  活性有机碳  影响机理 

基金项目 国家自然科学基金面上项目“广东沿海不同空间尺度红树林生态系统的碳贮量及碳汇潜力研究”(41371109);国家林业公益性行业科研专项“基于定位观测的森林火险预报关键技术研究”(201404402);广西自然科学基金“广西森林火灾污染物排放模型及其对大气环境的影响机理研究”(2014GXNSFBA118108)。

英文标题 Effects of Forest Fire Disturbance on Soil Labile Organic Carbon in Forest Ecosystem

作者英文名 Hu Haiqing, Luo Sisheng, Luo Bizhen, Wei Shujing, Liu Fei

单位英文名 1. College of Forestry, Northeast Forestry University, Harbin 150040, China;
2. Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China

英文摘要 As an active component of soil organic carbon, soil labile organic carbon plays an important role in litter decomposition and soil carbon cycle. Forest fire disturbance affects soil labile organic carbon by changing the quantity and physicochemical properties of soil substrates. Thus clarifying the impact of forest fire disturbance on soil labile organic carbon is the basis for carrying out the carbon cycle of forest ecosystems. With an eye on 6 components of soil labile organic carbon, this paper elaborates the research progress in the effect of forest fire disturbance on soil labile organic carbon. Based on the current research and existing problems, it is argued that further research should be made to explore the effects of forest fire disturbance on soil microbial activity change regime to reveal the influence mechanism of soil carbon pool balance, enhance the characteristics of C-N coupling cycle after fire interference, understand the interaction between the internal and external factors affecting soil labile organic carbon after forest fire disturbance to comprehensively evaluate the short-term and long-term effects of forest fire disturbance on soil labile organic carbon, and strengthen the study of interaction between forest fire disturbance, soil carbon pool and global climate change to have in-depth discussion on the interaction between forest fire disturbance and soil labile organic carbon and its influence mechanism.

英文关键词 forest fire disturbance;soil organic carbon;soil organic carbon fractions;labile organic carbon;influence mechanism

起始页码 13

截止页码 18

投稿时间 2019/7/24

最后修改时间 2020/3/3

作者简介 胡海清,教授,博士生导师,主要研究方向为林火生态与管理研究,E-mail:huhq-cf@nefu.edu.cn。

通讯作者介绍 罗碧珍,博士,讲师,主要研究方向为森林防灭火与森林生态,E-mail:luobizhen8@163.com。

E-mail 罗碧珍,博士,讲师,主要研究方向为森林防灭火与森林生态,E-mail:luobizhen8@163.com。

分类号 S714;S762.2

DOI 10.13348/j.cnki.sjlyyj.2020.0018.y

参考文献 [1] GONZÁLEZ-PÉREZ J A, GONZÁLEZ-VILA F J, ALMENDROS G, et al. The effect of fire on soil organic matter:a review[J]. Environment International, 2004, 30(6):855-870.
[2] ALCAÑIZ M, OUTEIRO L, FRANCOS M, et al. Effects of prescribed fires on soil properties:areview[J]. Science of The Total Environment, 2018, 613:944-957.
[3] 罗碧珍,罗斯生,魏书精,等. 生物质燃烧排放物研究进展[J]. 南京林业大学学报(自然科学版), 2018, 42(6):191-196.
[4] AUGUSTINE D J, BREWER P, BLUMENTHAL D M, et al. Prescribed fire, soil inorganic nitrogen dynamics, and plant responses in a semiarid grassland[J]. Journal of Arid Environments, 2014, 104:59-66.
[5] LI Q, TIAN Y, ZHANG X, et al. Labile carbon and nitrogen additions affect soil organic matter decomposition more strongly than temperature[J]. Applied Soil Ecology, 2017, 114:152-160.
[6] BLAIR G J, LEFROY R D B, LISLE L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems[J]. Australian Journal of Agricultural Research, 1995, 46(7):1459-1466.
[7] GOIDTS E, VAN WESEMAEL B. Regional assessment of soil organic carbon changes under agriculture in southern Belgium (1955-2005)[J]. Geoderma, 2007, 141(3/4):341-354.
[8] 孙悦, 徐兴良, KUZYAKOV Y. 根际激发效应的发生机制及其生态重要性[J]. 植物生态学报, 2014, 38(1):62-75.
[9] 周广胜, 王玉辉, 蒋延玲, 等. 陆地生态系统类型转变与碳循环[J]. 植物生态学报, 2002, 26(2):250-254.
[10] YANG X, MENG J, LAN Y, et al. Effects of maize stover and its biochar on soil CO2 emissions and labile organic carbon fractions in Northeast China[J]. Agriculture, Ecosystems & Environment, 2017, 240:24-31.
[11] MORRISSEY E M, BERRIER D J, NEUBAUER S C, et al. Using microbial communities and extracellular enzymes to link soil organic matter characteristics to greenhouse gas production in a tidal freshwater wetland[J]. Biogeochemistry, 2014, 117(2/3):473-490.
[12] 沈宏, 曹志洪, 胡正义. 土壤活性有机碳的表征及其生态效应[J]. 生态学杂志, 1999, 18(3):33-39.
[13] PLAZA-BONILLA D, ÁLVARO-FUENTES J, CANTERO-MARTÍNEZ C. Identifying soil organic carbon fractions sensitive to agricultural management practices[J]. Soil and Tillage Research, 2014, 139:19-22.
[14] 姜培坤. 不同林分下土壤活性有机碳库研究[J]. 林业科学, 2005, 41(1):10-13.
[15] 胡海清, 魏书精, 孙龙, 等. 气候变化、林火干扰与生态系统碳循环[J]. 干旱区地理, 2013, 36(1):57-75.
[16] 王清奎, 汪思龙, 冯宗炜, 等. 土壤活性有机质及其与土壤质量的关系[J]. 生态学报, 2005, 25(3):513-519.
[17] 李红运, 辛颖, 赵雨森. 火烧迹地不同恢复方式土壤有机碳分布特征[J]. 应用生态学报, 2016, 27(9):2747-2753.
[18] 刘俊第, 林威, 王玉哲, 等. 火烧对马尾松林土壤酶活性和有机碳组分的影响[J]. 生态学报, 2018, 38(15):5374-5382.
[19] 徐广平, 李艳琼, 沈育伊, 等. 桂林会仙喀斯特湿地水位梯度下不同植物群落土壤有机碳及其组分特征[J]. 环境科学, 2019, 40(3):1-22.
[20] GERMAN D P, CHACON S S, ALLISON S D. Substrate concentration and enzyme allocation can affect rates of microbial decomposition[J]. Ecology, 2011, 92(7):1471-1480.
[21] GRANGED A J P, ZAVALA L M, JORDÁN A, et al. Post-fire evolution of soil properties and vegetation cover in a Mediterranean heathland after experimental burning:a 3-year study[J]. Geoderma, 2011, 164(1/2):85-94.
[22] SUN Y, WU J, SHAO Y, et al. Responses of soil microbial communities to prescribed burning in two paired vegetation sites in southern China[J]. Ecological Research, 2011, 26(3):669-677.
[23] PRIETO-FERNÁNDEZ A, ACEA M J, CARBALLAS T. Soil microbial and extractable C and N after wildfire[J]. Biology and Fertility of Soils, 1998, 27(2):132-142.
[24] ILSTEDT U, GIESLER R, NORDGREN A, et al. Changes in soil chemical and microbial properties after a wildfire in a tropical rainforest in Sabah, Malaysia[J]. Soil Biology and Biochemistry, 2003, 35(8):1071-1078.
[25] HART S C, DELUCA T H, NEWMAN G S, et al. Post-fire vegetative dynamics as drivers of microbial community structure and function in forest soils[J]. Forest Ecology and Management, 2005, 220(1/2/3):166-184.
[26] XU X, THORNTON P E, POST W M. A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems[J]. Global Ecology and Biogeography, 2013, 22(6):737-749.
[27] MCDOWELL W H, LIKENS G E. Origin, composition, and flux of dissolved organic carbon in the Hubbard Brook Valley[J]. Ecological Monographs, 1988, 58(3):177-195.
[28] HUANG W Z, SCHOENAU J J. Fluxes of water-soluble nitrogen and phosphorus in the forest floor and surface mineral soil of a boreal aspen stand[J]. Geoderma, 1998, 81(3/4):251-264.
[29] GOODALE C L, ABER J D, MCDOWELL W H. The long-term effects of disturbance on organic and inorganic nitrogen export in the White Mountains, New Hampshire[J]. Ecosystems, 2000, 3(5):433-450.
[30] O'DONNELL J A, TURETSKY M R, HARDEN J W, et al. Interactive effects of fire, soil climate, and moss on CO2 fluxes in black spruce ecosystems of interior Alaska[J]. Ecosystems, 2009, 12(1):57-72.
[31] WANG Q K, ZHONG M C, WANG S L. A meta-analysis on the response of microbial biomass, dissolved organic matter, respiration, and N mineralization in mineral soil to fire in forest ecosystems[J]. Forest Ecology and Management, 2012, 271:91-97.
[32] LEFROY R D B, BLAIR G J, STRONG W M. Changes in soil organic matter with cropping as measured by organic carbon fractions and 13C natural isotope abundance[J]. Plant and Soil, 1993, 155(1):399-402.
[33] 耿玉清, 余新晓, 岳永杰, 等. 北京山地针叶林与阔叶林土壤活性有机碳库的研究[J]. 北京林业大学学报, 2009, 31(5):19-24.
[34] 张茂增, 辛颖, 赵雨森. 火烧对大兴安岭樟子松天然林土壤有机碳组分的影响[J]. 水土保持学报, 2016, 30(5):322-326.
[35] PARTON W J, SCHIMEL D S, COLE C V, et al. Analysis of factors controlling soil organic matter levels in Great Plains grasslands 1[J]. Soil Science Society of America Journal, 1987, 51(5):1173-1179.
[36] 黄宗胜, 喻理飞, 符裕红. 喀斯特森林植被自然恢复过程中土壤可矿化碳库特征[J]. 应用生态学报, 2012, 23(8):2165-2170.
[37] SIKORA L J, MCCOY J L. Attempts to determine available carbon in soils[J]. Biology and Fertility of Soils, 1990, 9(1):19-24.
[38] ZHAO H, TONG D Q, LIN Q, et al. Effect of fires on soil organic carbon pool and mineralization in a Northeastern China wetland[J]. Geoderma, 2012, 189:532-539.
[39] HATTEN J A, ZABOWSKI D. Changes in soil organic matter pools and carbon mineralization as influenced by fire severity[J]. Soil Science Society of America Journal, 2009, 73(1):262-273.
[40] FERNÁNDEZ I, CABANEIRO A, CARBALLAS T. Carbon mineralization dynamics in soils after wildfires in two Galician forests[J]. Soil Biology and Biochemistry, 1999, 31(13):1853-1865.
[41] GREGORICH E G, CARTER M R, ANGERS D A, et al. Towards a minimum data set to assess soil organic matter quality in agricultural soils[J]. Canadian Journal of Soil Science, 1994, 74(4):367-385.
[42] HECKMAN K, CAMPBELL J, POWERS H, et al. The influence of fire on the radiocarbon signature and character of soil organic matter in the Siskiyou national forest, Oregon, USA[J]. Fire Ecology, 2013, 9(2):40-56.
[43] 吴建国,张小全,王彦辉,等.土地利用变化对土壤物理组分中有机碳分配的影响[J].林业科学,2002,38(4):19-29.
[44] MUQADDAS B, LEWIS T, ESFANDBOD M, et al. Responses of labile soil organic carbon and nitrogen pools to long-term prescribed burning regimes in a wet sclerophyll forest of southeast Queensland, Australia[J]. Science of the Total Environment, 2019, 647:110-120.

PDF全文 浏览全文

相关图谱

扫描二维码