数据资源: 科信所期刊全文

藤材基相变储能材料制备及其性能



编号 lyqk011147

中文标题 藤材基相变储能材料制备及其性能

作者 吴志勇 

作者单位 福建省林业勘察设计院 福州 350002

期刊名称 世界竹藤通讯 

年份 2023 

卷号 21

期号 4

栏目名称 学术园地 

中文摘要 有机相变材料(PCM)在相变过程中发生泄漏,大大地限制了它们的实际应用。为解决这一问题,本文以藤材为骨架,石蜡为相变材料,通过多孔材料物理吸附凝结法将石蜡浸入藤材中,成功制备出藤材基相变储能材料。通过场发射扫描电镜(FE-SEM)观察藤材和藤材基相变储能材料的微观形貌,通过傅里叶变换红外(FTIR)光谱、X射线衍射(XRD)和热重(TGA)分别分析藤材、石蜡和藤材基相变储能材料的官能团、结晶特性和热解性能,用差示扫描量热仪(DSC)分析石蜡和藤材基相变储能材料的热力学性能。结果表明,藤材基相变储能材料的吸收峰和衍射峰是藤材和石蜡的叠加,说明二者仅为物理吸附;所制备的藤材基相变储能材料中石蜡与藤材能很好的相互结合,基本无泄漏,相变温度为52.56 ℃,相变焓值为96.96 J/g,藤材基相变储能材料中石蜡含量为52.3%。由此可见,藤材是一种理想的多功能PCM骨架,可以促进PCM复合材料的实际应用。

关键词 藤材  石蜡  相变材料  材料性能  储能 

基金项目 福建省林业科技项目(闽林科便函〔2018〕26号)。

英文标题 Preparation and Properties of Rattan Based Phase Change Materials for Energy Storage

作者英文名 Wu Zhiyong

单位英文名 Fujian Forestry Prospect and Design Institute, Fuzhou 350002, China

英文摘要 The leakage of organic phase change materials (PCM) during phase transition greatly limits their practical application. In order to solve this problem, this paper uses rattan as the skeleton and paraffin wax as the phase change material to successfully prepare the rattan-based phase change materials for energy storage by immersing paraffin wax into rattan with porous materials having the ability of physical adsorption condensation. Field emission scanning electron microscopy (FE-SEM) is used to observe the morphology of rattan and rattan-based phase change energy storage materials. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermograying (TGA) are employed to analyze the functional groups, crystallization properties and pyrolysis properties of rattan, paraffin wax and rattan-based phase change energy storage materials, respectively. The thermodynamic properties of paraffin and rattan-based phase change energy storage materials are analyzed using differential scanning calorimeter (DSC). It is found that the absorption peak and the diffraction peak of rattan-based phase change energy storage material are superimposed by rattan and paraffin wax, indicating that they are only physical adsorption. The paraffin wax and rattan in the prepared rattan-based phase change energy storage material can combine well with each other, basically allowing no leakage, with phase change temperature at 52.56℃, phase change enthalpy value at 96.96 J/g, and paraffin content in rattan-based phase change energy storage material at 52.3%. Therefore, rattan is an ideal multifunctional PCM scaffold, which can promote the practical application of PCM composite materials.

英文关键词 rattan;paraffin wax;phase change material;material property;energy storage

起始页码 6

截止页码 13

作者简介 吴志勇,男,高级工程师,研究方向为林业产业规划设计。E-mail:290745228@qq.com。

DOI 10.12168/sjzttx.2023.07.16.002

参考文献 [1] LIU PP, CHEN X, LI Y, et al. Aerogels meet phase change materials:fundamentals, advances, and beyond[J]. ACS Nano, 2022, 16(10):15586-15626. DOI:10.1021/acsnano.2c05067.
[2] 韩申杰. 纳米纤维素改性石蜡相变微胶囊的制备及其性能研究[D]. 北京:中国林业科学研究院, 2020.
[3] 杨海月. 木质基相变储能复合材料的构筑及其功能研究[D]. 哈尔滨:东北林业大学, 2021.
[4] YANG H, WANG Y, YU Q, et al. Composite phase change materials with good reversible thermochromic ability in delignified wood substrate for thermal energy storage[J]. Applied Energy, 2018, 212:455-464. DOI:10.1016/j.apenergy.2017.12.006.
[5] MATEI C, LUCIAN BUHǍLEANU, BERGER D, et al. Functionalized mesoporous silica as matrix for shape-stabilized phase change materials[J]. International Journal of Heat and Mass Transfer, 2019, 144(C). DOI:10.1016/j.ijheatmasstransfer.2019.118699.
[6] REBECA S P, MARC M, ADELA SS, et al. Manufacturing of nano-enhanced shape stabilized phase change materials with montmorillonite by Banbury oval rotor mixer for buildings applications[J]. Journal of Energy Storage, 2022, 55(Part A):105289. DOI:10.1016/j.est.2022.105289.
[7] 曾媛, 杨雪, 陈杨华. 月桂酸-十四酸/纳米二氧化硅/活性炭复合相变储能材料的制备与性能研究[J]. 化工新型材料, 2022, 50(S1):262-266, 269.
[8] LI Y L, ZOU T, ZHAO J, et al. High-enthalpy aramid nanofiber aerogel-based composite phase change materials with enhanced thermal conductivity[J]. Composites Communications, 2023, 40:101614. DOI:10.1016/j.coco.2023.101614
[9] 肖俊兵, 邹博, 庄依杰, 等. 泡沫金属复合相变体系导热性能研究及应用[J].中南大学学报(自然科学版), 2022, 53(12):4687-4699.
[10] 高慧, 孟多. 石蜡/改性粉煤灰定形相变材料的制备及热性能研究[J]. 新型建筑材料, 2023, 50(4):1-6, 49.
[11] LI J, MA R, LU Y, et al. A gravity-driven high-flux catalytic filter prepared using a naturally three-dimensional porous rattan biotemplate decorated with Ag nanoparticles[J]. Green Chemistry, 2020, 22(20):6846-6854. DOI:10.1039/D0GC01709D.
[12] WANG C, LIANG W, YANG Y, et al. Biomass carbon aerogels based shape-stable phase change composites with high light-to-thermal efficiency for energy storage[J]. Renewable Energy, 2020, 153:182-192. DOI:10.1016/j.renene.2020.02.008.
[13] XIAO S, GAO R, LU Y, et al. Fabrication and characterization ofnanofibrillated cellulose and its aerogels from natural pine needles[J]. Carbohydrate Polymers, 2015, 119:202-209. DOI:10.1016/j.carbpol.2014.11.041.
[14] HAN S, LYU S, CHEN Z, et al. Combined stabilizers prepared from cellulose nanocrystals and styrene-maleic anhydride to microencapsulate phase change materials[J]. Carbohydrate Polymers, 2020, 234:115923. DOI:10.1016/j.carbpol.2020.115923.
[15] 谢成, 刘志明, 吴鹏, 等. 聚乙二醇木材复合相变储能材料的制备及表征[J]. 林业科学, 2012, 48(9):120-126.

PDF全文 浏览全文

相关图谱

扫描二维码