编号 zgly0001710876
文献类型 期刊论文
文献题名 基于Boosting的高光谱遥感切空间协同表示集成学习方法
作者单位 河海大学地球科学与工程学院
母体文献 遥感技术与应用
年卷期 2020年03期
年份 2020
分类号 TP751 TP181
关键词 切空间协同表示 集成学习 Boosting 高光谱遥感分类
文摘内容 近年来,协同表示分类(Collaborative Representation Classification,CRC)算法成为高光谱遥感影像分类的研究热点,尤其是切空间协同表示分类(Tangent Space Collaborative Representation,TCRC)利用切平面估计测试样本的局部流形,其分类精度得到了显著提高。为进一步提升高光谱遥感影像分类的准确性和可靠性,提出了基于Boosting的高光谱遥感影像切空间协同表示分类算法(Boosting-based Tangent Space Collaborative Representation Classification,Boost TCRC)。Boost TCRC算法采用TCRC算法作为基分类器,通过Boosting原理自适应地调整训练样本的权重,增大错分样本的权重从而使得分类器专注于较难分类的训练样本,然后在基于残差域融合时根据基分类器的分类表现赋予其权重,最终采用最小重构误差的原则对测试样本进行分类。实验采用HyMap(Hyperspectral Mapper)和AVIRIS(Airbone Visible Infrared Imaging Spectrometer)等高光谱遥感影像数据对所提出算法的性能进行了综合评价,结果表明:基于Boosting的集成方式可有效提升TCRC算法的分类效果。针对HyMap数据,Boost TCRC算法总体分类精度和Kappa系数分别为93.73%和0.920 8,两种精度指标分别高于TCRC算法2.82%和0.032 3,同时分别高于AdaBoost ELM算法1.81%和0.022 5。对于AVIRIS数据,Boost TCRC算法总体分类精度和kappa系数为84.11%和0.812 0,两种精度指标分别高于TCRC算法3.97%和0.049 3,同时分别高于AdaBoost ELM算法12.02%和0.143 6。