编号 zgly0001569381
文献类型 期刊论文
文献题名 基于改进粒子群优化算法的BOD-DO水质模型参数确定
作者单位 长安大学理学院 长安大学环境科学与工程学院
母体文献 西北农林科技大学学报(自然科学版
年卷期 2017年03期
年份 2017
分类号 X52 TP18
关键词 BOD-DO水质模型 种群多样性 粒子群优化算法 参数估计
文摘内容 【目的】将改进的粒子群优化算法应用于BOD-DO水质模型参数求解,为水质模型参数求解提供支持。【方法】通过差异演化算法对各个体历史最佳位置进行变异,以保持种群多样性,并在搜索后期加入局部搜索能力强的单纯形算法,建立改进的粒子群优化算法,并用该算法对BOD-DO水质模型参数进行求解。【结果】改进的粒子群优化算法能有效地确定BOD-DO水质模型参数;参数取值范围的放宽对算法的收敛性影响较小,但迭代次数有所增加;均匀分布法生成的初始种群可以有效地提高算法的收敛率,加快收敛速度;交叉概率和缩放因子的随机选取策略,可以有效地提高算法的收敛率并加快收敛速度;比较计算结果可知,改进的粒子群优化算法的收敛精度有所提高,收敛率可达到100%,收敛速度可提高5倍以上,标准差约是粒子群优化算法的10%。【结论】改进的粒子群优化算法有效地避免了原算法的早熟或停滞,为不同类型的水质模型参数求解提供了一个可靠的方法。