编号 zgly0001667199
文献类型 期刊论文
文献题名 基于Faster R-CNN的实木板材缺陷检测识别系统
作者单位 南京林业大学机械电子工程学院
母体文献 林业工程学报
年卷期 2019年03期
年份 2019
分类号 S781.5 TP391.41
关键词 实木板材 板材缺陷识别 深度学习 FasterR-CNN 无损检测
文摘内容 我国木材资源有限,为了提高木材的利用率,采用机器视觉来实现木材缺陷快速而稳定的检测,不仅可以克服人工检测的低效率和木材缺陷识别的低准确率,而且对提高木材加工企业的智能化水平具有重要意义。为了高效、快速、准确地进行无损检测,采用深度学习方法,建立了一种基于快速深度神经网络的实木板材缺陷识别模型。首先采用Resnet V2结构对采集到的实木板材缺陷图像进行特征提取,然后应用该模型对节子、孔洞等实木板材缺陷进行训练学习,最后构建了Faster R-CNN检测框架,并使用tensorflow开发平台对节子、孔洞等实木板材缺陷进行预测输出。具体选取了2 000块杉木样本,通过旋转对原始的实木板材图像进行数据扩充,扩充后图像的80%作为训练集,20%作为验证集来进行仿真。仿真结果表明,该模型对实木板材节子缺陷检测正确率为98%,对实木板材孔洞缺陷检测正确率为95%,验证了将深度学习算法应用于实木板材缺陷检测中的有效性。