数据资源: 中文期刊论文

基于近红外光谱波段优选的针叶木材基本密度估测模型的优化研究



编号 zgly0001692685

文献类型 期刊论文

文献题名 基于近红外光谱波段优选的针叶木材基本密度估测模型的优化研究

作者 尹世逵  冯国红  李春旭  赵婧含  孟永斌  王晨  李耀翔 

作者单位 东北林业大学工程技术学院 

母体文献 中南林业科技大学学报 

年卷期 2020年03期

年份 2020 

分类号 S781.31 

关键词 基本密度  近红外光谱  波段优选  偏最小二乘法 

文摘内容 【目的】木材基本密度在木材质量等级评定中具有重要作用,是木材分流及精细化利用的重要依据。【方法】以东北林区典型针叶树种为研究对象,结合近红外光谱技术,构建红松、落叶松、云冷杉木材基本密度近红外估测模型,分析比较了不同波段优选算法并进行了模型优化。研究采用竞争性自适应重加权法(CARS)、无信息变量消除法(UVE)和间隔偏最小二乘法(iPLS)对木材近红外光谱波段进行优化,基于卷积平滑算法对近红外光谱数据进行预处理,结合偏最小二乘法(PLS)建立针叶木材基本密度估测模型。依据相关系数(R)、均方根误差(RMSEC)等模型参数对模型效果进行评价,对比分析确定最佳波段优选方法,得到最优针叶木材基本密度近红外估测模型。【结果】利用CARS、UVE、i PLS的波段优化方法对近红外光谱波段的筛选,可以起到优化针叶木材基本密度模型的作用,减少参与建模的近红外光谱的波段变量数,明显提升模型的运算速度,使得模型准确度更高、稳定性更好;利用间隔偏最小二乘法结合偏最小二乘法(iPLS-PLS)进行波段优选的针叶木材基本密度模型效果最好,其模型校正相关系数为0.938 0,校正均方根误差为0.021 8,验证相关系数为0.8959,验证均方根误差为0.028 0。【结论】基于波段优选及模型优化构建东北林区典型针叶树种基本密度近红外估测模型,可以有效提高运算速度及估测精度,实现针叶材基本密度的快速、准确、无损估测,为针叶木材材性研究和森林培育提供了理论依据与技术支撑,有利于进一步实现木材的高效节约与精细化利用。

相关图谱

扫描二维码